Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные технологические способы обработки поверхности режущих инструментов

Читайте также:
  1. I. ОСНОВНЫЕ БОГОСЛОВСКИЕ ПОЛОЖЕНИЯ
  2. I. ОСНОВНЫЕ ЗАДАЧИ БЮДЖЕТНОЙ ПОЛИТИКИ НА 2010 ГОД И ДАЛЬНЕЙШУЮ ПЕРСПЕКТИВУ
  3. I. Основные задачи бюджетной политики на 2010 год и дальнейшую перспективу
  4. I. ОСНОВНЫЕ РЕЗУЛЬТАТЫ БЮДЖЕТНОЙ ПОЛИТИКИ В 2010 ГОДУ И В НАЧАЛЕ 2011 ГОДА
  5. I. Основные результаты и проблемы бюджетной политики
  6. I. ПРИЕМЫ ИЗМЕРЕНИЙ И СТАТИСТИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ ИХ РЕЗУЛЬТАТОВ В ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ
  7. I. Способы получения образования духовенством и интеллектуальное состояние его во II и III веках

 

Существует несколько способов обработки рабочей поверхности инструмента, направленных на повышение ее прочности:

1) химико-термическая обработка металлов.

Химико-термической обработкой называется термическая обработка, заключающаяся в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя металла. При поверхностной закалке (газопламенная закалка) и химико-термической обработке (цементование) упрочнение обусловлено главным образом возникновением в поверхностном слое остаточных сжимающих напряжений вследствие образования структур большего удельного объема (нитриды и карбонитриды при нитроцементации и азотировании), чем структуры основного металла.

Азотирование — это технологический процесс химико-термической обработки, при которой поверхность различных металлов или сплавов насыщают азотом в специальной азотирующей среде. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и приобретает повышенную коррозионную стойкость и микротвёрдость. По микротвёрдости азотирование уступает только борированию, в то же время превосходя цементацию и нитроцементацию (незначительно).

Цианирование в сталелитейном производстве — процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при температурах 820-950° C в расплаве цианида натрия или других солей с тем же анионом. Цианирование применяют для повышения износостойкости и коррозионостойкости деталей. Процесс цианирования по сравнению с процессом цементации требует гораздо меньше времени для получения слоя заданной толщины, характеризуется значительно меньшими деформациями и короблением деталей сложной формы.

Борирование — химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали бором при нагреве в соответствующей среде (упрочнение поверхностей). Тысячные доли бора увеличивают износостойкость стали в 2 раза. Борирование чаще всего проводят при электролизе расплавленной буры (Na2B4O7). Изделие служит катодом. Температура насыщения 930—950 °C, выдержка 2 — 6 часов. Борирование можно производить при отливке деталей. В этом случае на поверхность литейной формы наносится слой специальной боросодержащей массы (краски). При использовании выжигаемых моделей из пенопластов боросодержащая краска наносится на поверхность модели. Способ отличается производительностью и простотой. Борирование применяют для повышения износостойкости втулок грязевых нефтяных насосов, дисков пяты турбобура, вытяжных, гибочных и формовочных штампов, деталей пресс-форм и машин литья под давлением. Стойкость деталей после борирования увеличивается в 2 — 10 раз. Изделия, подвергшиеся борированию, обладают повышенной до 800 °C окалиностойкостью и теплостойкостью до 900–950 °C. Твердость борированного слоя в сталях перлитного класса составляет 15 000–20 000 МПа.

Цементация стали — поверхностное диффузионное насыщение малоуглеродистой стали углеродом с целью повышения твёрдости, износоустойчивости. Цементации подвергают низкоуглеродистые (обычно до 0.2 % C) и легированные стали, процесс в случае использования твёрдого карбюризатора проводится при температурах 900—950 °С, при газовой цементации (газообразный карбюризатор) — при 850—900 °С. После цементации изделия подвергают термообработке, приводящей к образованию мартенситной фазы в поверхностном слое изделия (закалка на мартенсит) с последующим отпуском для снятия внутренних напряжений.[3]

Закалка — вид термической обработки изделий из металлов и сплавов, заключающийся в их нагреве выше критической температуры (температуры изменения типа кристаллической решетки, т. е. полиморфного превращения), с последующим быстрым охлаждением, как правило, в жидкости (воде или масле). Различают закалку с полиморфным превращением, для сталей, и закалку без полиморфного превращения, для большинства цветных металлов. Материал, подвергшийся закалке приобретает бо́льшую твердость, но становится хрупким, менее пластичным и вязким, если сделать большее количество повторов нагревание-охлаждение. Для снижения хрупкости и увеличения пластичности и вязкости, после закалки с полиморфным превращением применяют отпуск. После закалки без полиморфного превращения применяют старение. При отпуске имеет место некоторое снижение твердости и прочности материала.

В некоторых изделиях закалка выполняется частично, например при изготовлении японских катан, закалке подвергается только режущая кромка меча.[4]

2) Упрочнение поверхности пластической деформацией. Поверхностное пластическое деформирование (ППД) – наклеп поверхностного слоя на глубину 0.2-0.8 мм с целью создания в нем остаточного напряжения сжатия. При наклепе поверхностный слой расплющивается. Удлинению поверхностного слоя препятствует сила сцепления с нижележащими слоями металла. Вследствие этого в наклепанном слое возникают двухосные напряжения сжатия, а в толще основного металла незначительные реактивные напряжения растяжения. Складываясь с рабочими напряжениями растяжения, остаточные напряжения сжатия уменьшают, а при достаточно больших значениях компенсируют первые. Возникающие при наклепе множественные искажения структуры (деформация зерна, местные пластические сдвиги) эффективно тормозят развитие усталостных повреждений и расширяют область существования нераспостроняющихся трещин, увеличение которых обуславливает существование разрушающих напряжений.

Дробеструйная обработка заключается в наклепе поверхностного слоя потоком закаленных шариков (диаметр 0.5-1.5 мм), создаваемым центробежными дробеметками. Качество поверхности при данном процессе немного снижается.

Плоские поверхности упрочняют обкатыванием шариками, установленными во вращающемся патроне. Заготовке придают движение продольной и поперечной подачи, при правильно выбранном режиме обкатывания, остаточные напряжения сжатия в поверхностном слое составляют 600-1000 МПа. Глубина уплотнения слоя 0.2-0.5 мм. Данный процесс улучшает качество поверхности детали. Поверхность вращения упрочняют обкатыванием стальными закаленными роликами. Силу прижатия ролика выбирают с таким ращетом, чтобы создать в поверхностном слое напряжения, превышающие предел текучести материала в условиях всестороннего сжатия (для стали 5000-6000 МПа).

Чеканку производят бойками со сферической рабочей поверхностью, приводимыми в колебания пневматическими устройствами. Частота колебаний и скорость вращения заготовки должны быть согласованы таким образом, чтобы наклепанные участки перекрывали друг друга.

Алмазное выглаживание заключается в обработке предварительно шлифованной и полированной поверхности закругленными алмазными резцами (радиус 2-3 мм). Поверхностный слой уплотняется до глубины 0.3-0.5 мм. Качество поверхности значительно улучшается.[5]

3) Газотермическое напыление.

Основное преимущество газопламенного напыления (ГТН) - его функциональная универсальность. Методы газотермического напыления применяют для восстановления, упрочнения и коррозионной защиты поверхностей деталей, при этом применение названных методов позволяет наносить покрытия на такие материалы, как дерево, ткани, бетон, металлы, пластмассы и пр. Толщина наносимого слоя лежит в диапазоне от десятков микрометров до нескольких миллиметров, а в отдельных случаях до десятков миллиметров. Покрытие может наноситься на заданные участки или без ограничения размеров поверхностей напыления; на наружные и внутренние поверхности деталей и т.д.

Основные преимущества методов ГТН перед другими способами восстановления:
- нагрев детали в процессе напыления до температуры не выше 200 градусов Цельсия;
- отсутствие коробления деталей после напыления в связи с отсутствием нагрева при обработке;
- отсутствие структурных изменений в материале напыляемой детали;
- возможность напыления на закаленные поверхностные слои и на чугун;
- возможность напыления покрытий на легкоплавкие материалы слоев из более тугоплавких материалов (в т.ч. на дерево и пластмассы);
- возможность напыления материалов в самых различных сочетаниях, что невозможно сделать при наплавке (например, напыление алюминия на медь или наоборот);
- возможность напыления оксидов и карбидов;
- высокая экономическая эффективность процесса.

Существует несколько методов газотермического напыления:

· электродуговая металлизация

Принципиальная схема электродуговой металлизации показана на рисунке. Через два канала в горелке непрерывно подают две проволоки (диаметром 1,5—3,2 мм), между концами которых возбуждается дуга, за счет тепла которой и происходит расплавление проволоки. Расплавленный металл подхватывается струёй сжатого воздуха, истекающего из центрального сопла электрометаллизатора, распыляется и в виде жидких капель переносится на поверхность напыляемой детали.


Рисунок 1.11 — Схема дугового напыления. 1 — сопло; 2 — место ввода напыляемого материала (проволоки); 3—место подачи сжатого воздуха

· газопламенное напыление

Газопламенное напыление в зависимости от состояния напыляемого материала может быть трех типов: напыление проволокой, прутком или порошком.


Рисунок 1.12 – Схема газопламенного напыления. П – покрытие; С – струя напыляемого материала и продуктов сгорания газов.

· плазменное напыление

Принцип плазменного напыления. Между катодом и медным водоохлаждаемым соплом, служащим анодом, возникает дуга, нагревающая поступающий в сопло горелки рабочий газ, который истекает из сопла в виде плазменной струи. В качестве рабочего газа используют аргон или азот, к которым иногда добавляют водород. Порошковый наплавочный материал подается в сопло струёй транспортирующего инертного газа, нагревается плазмой и с ускорением переносится на поверхность основного материала для образования покрытия. Средняя температура плазмы на выходе из сопла плазмотрона находится в пределах от нескольких тысяч градусов до десятков тысяч градусов Кельвина.

Схема пламенного напыления

Рисунок 1.13– Схема пламенного напыления. П – покрытие; С – струя напыляемого материала и продуктов сгорания газов.

4) холодное газодинамическое напыление;

Холодное газодинамическое напыление металлических покрытий — это процесс формирования металлических покрытий при соударении холодных (с температурой, существенно меньшей температуры плавления) металлических частиц, ускоренных сверхзвуковым газовым потоком до скорости несколько сот метров в секунду, с поверхностью обрабатываемой детали. При ударах нерасплавленных металлических частиц о подложку происходит их пластическая деформация и кинетическая энергия частиц преобразуется в тепло и, частично, в энергию связи с подложкой, обеспечивая формирование сплошного слоя из плотно упакованных металлических частиц.

Основной особенностью холодного газодинамического напыления является отсутствие высоких температур в процессе формирования металлических покрытий, следовательно, отсутствие окисления материалов частиц и основы, процессов неравновесной кристаллизации, высоких внутренних напряжений в обрабатываемых деталях.

К настоящему времени существуют две основных разновидности:

Холодное газодинамическое напыление высокого давления. В качестве рабочего газа используются азот или гелий при давлениях выше 1,5 МПа (15 атм), расходе более 2 куб.м/мин., и мощностью подогрева более 18 кВт. Для напыления обычно используются чистые металлические порошки размером 5-50 мкм.

Холодное газодинамическое напыление низкого давления. В качестве рабочего газа используется сжатый воздух давлением 0,5-1,0 МПа (5-10 атм), расходом 0,5 куб.м/мин, и мощностью подогрева 3-5 кВт. Для напыления покрытий используются механические смеси металлических и керамических порошков. Включение керамического компонента в напыляемую смесь обеспечивает получение качественных покрытий при сравнительно небольших энергозатратах. Технология позволяет создавать алюминиевые, медные, цинковые, оловянные, свинцовые, никелевые и другие металлические покрытия. В качестве керамической примеси обычно используется оксид алюминия, хотя могут быть использованы и другие материалы, отличающиеся высокой твердостью и температурой плавления. Технология находит широкое применение в различных отраслях промышленности для решения целого ряда задач по нанесению металлических покрытий в машиностроении, авиакосмической технике, электротехнике, нефте- газодобыче, переработке, на газоперекачивающих станциях магистральных газопроводов, в судостроении, судоремонте, атомной энергетике, железнодорожном транспорте, метро, ремонте автомобильной, дорожной и специальной техники, в декоративно-прикладном искусстве.[6-10]

5) нанесение антифрикционных покрытий;

Процесс нанесения антифрикционных покрытий должен обеспечивать выполнение тех же требований, что и для износостойких покрытий, с той лишь разницей, что при его проведении строго не ограничивается толщина покрытия. Антифрикционные материалы (от англ. friction — трение) — это группа материалов, обладающих низким коэффициентом трения или материалы способные уменьшить коэффициент трения других материалов.

Твердые антифрикционные материалы обладают повышенной устойчивостью к износу при продолжительном трении. Используется для покрытия трущихся поверхностей (например, в подшипниках скольжения). Например, такими материалами могут служить латунь, железографит, бронза или баббит.

Эти материалы должны иметь минимальный коэффициент трения, структура покрытия должна обеспечивать антисхватывание и возможность быстрой приработки к контртелу, механические характеристики материала должны соответствовать эксплуатационным нагрузкам, должны быть достаточно износостойкими и пластичными. [11]

6) наплавка.

Наплавка — это нанесение слоя металла или сплава на поверхность изделия посредством сварки плавлением.

Восстановительная наплавка применяется для получения первоначальных размеров изношенных или поврежденных деталей. В этом случае наплавленный металл близок по составу и механическим свойствам основному металлу.

Наплавка функциональных покрытий служит для получения на поверхности изделий слоя с необходимыми свойствами. Основной металл обеспечивает необходимую конструкционную прочность. Слой наплавленного металла придаёт особые заданные свойства: износостойкость, жаростойкость, жаропрочность, коррозионную стойкость и т. д.

Наплавку производят при восстановлении изношенных и при изготовлении новых деталей машин и механизмов. Наиболее широко наплавка применяется при ремонтных работах. Восстановлению подлежат корпусные детали различных двигателей внутреннего сгорания, распределительные и коленчатые валы, клапаны, шкивы, маховики, ступицы колес и т. д.[12]

7) Вакуумное нанесение на рабочую поверхность инструмента покрытий из сверхтвердых соединений. Данный способ является наиболее эффективным и прогрессирующим из выше упомянутых способов, позволяет резко повысить эксплуатационные качества режущего инструмента тем самым, расширяя его область применения.[13]

Вакуумное нанесение - перенос частиц напыляемого вещества от источника (места его перевода в газовую фазу) к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10-2 Па и ниже (вакуумное испарение) и путем диффузионного и конвективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10-1-10-2 Па (магнетронное и ионно-плазменное распыление). Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и химического сродства материалов пленки и детали. Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация). При высоких энергиях частиц, большой температуре поверхности и малом химическом сродстве частица отражается поверхностью. Температура поверхности детали, выше которой все частицы отражаются от нее и пленка не образуется, называется критической температурой напыления вакуумного; ее значение зависит от природы материалов пленки и поверхности детали, и от состояния поверхности. При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т.е. пленка не растет. Критической плотностью потока испаряемых частиц для данной температуры поверхности называется наименьшая плотность, при которой частицы конденсируются и формируют пленку. Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления. Пленки могут быть аморфными (стеклообразными, например оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (например, полупроводниковые пленки, полученные молекулярно-лучевой эпитаксией). Для упорядочения структуры и уменьшения внутренних механических напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, несколько превышающих температуру поверхности при напылении. Часто посредством вакуумного напыления создают многослойные пленочные структуры из различных материалов.

1.3.2 Основные требования к износостойким покрытиям.

К покрытиям в зависимости от материала и условий эксплуатации режущего инструмента, предъявляются своего рода технологические требования, которые можно подразделить на четыре категории.

Во-первых, это условие, учитывающее условия работы инструмента. Покрытие должно обладать: высокой твердостью, превышающей твердость материала инструмента; устойчивостью к высокотемпературной коррозии; отсутствие схватываемости с обрабатываемым материалом во всем диапазоне температур резания; устойчивостью к разрушению при колебании температур и напряжений; постоянством механических свойств, даже при температурах, близких к температурам разрушения инструментального материала.

Во-вторых, это необходимость совместимости свойств материала покрытия со свойствами материала инструмента: сродство кристаллохимического строения материала покрытия и инструмента; оптимальное соотношение материалов покрытия и инструмента по модулям упругости, коэффициентам Пуассона и линейного расширения, теплопроводности; малая склонность к образованию хрупких вторичных соединений.

В-третьих, это требования к технологическим особенностям метода нанесения покрытий: создание в процессе нанесения покрытия на инструмент условий, не оказывающих существенного влияния на физические и кристаллохимические свойства материала инструмента.

В-четвертых, требования, относящиеся к покрытиям в целом: покрытие должно быть сплошным и иметь постоянную плотность по всему объему, тем самым, защищая материал инструмента от соприкосновения с обрабатываемым материалом и газовой средой; стабильность свойств покрытия во времени; малость колебаний толщины покрытия в процессе работы, позволяющая не изменять рельеф материала инструмента. [14-18]

 

1.3.3 Износостойкие покрытия для режущих инструментов

 

Наиболее широко в качестве износостойких покрытий применяются соединения тугоплавких d-переходных металлов IV-VI Периодической системы элементов с кислородом, углеродом и азотом [5]. Это связано с особенностями их кристаллохимического строения:

- Во-первых, эти металлы имеют недостаток электронов на внутренних s, p и d орбиталях, и это приводит к тому, что они с достаточной легкостью могут приобретать электроны из любого источника, которым может служить междоузельные атомы углерода, азота и кислорода.

- Во-вторых, большинство переходных металлов имеют достаточно большие атомные радиусы и при образовании соединений с атомами C,N и O могут подчинятся правилу Хэгга, согласно которому отношение радиуса атома неметалла к радиусу атома металла меньше критического значения 0.59. Для соединений металлов IV группы (Ti,Zr,Hf) достаточно точно выдерживается правило Хэгга, что приводит к образованию простых структур, в которых превалирует связь металл-металл, а атомы C,H,O можно рассматривать как вставленные в решетку атомов металла.

- В-третьих, большинство переходных металлов имеют широкие области гомогенности, что позволяет в зависимости от содержания кислорода, азота и углерода достаточно сильно изменять физико-механические свойства их карбидов, нитридов и оксидов.

- В-четвертых, переходные металлы и некоторые их соединения, в первую очередь соединения с простой кубической структурой типа NaCl (ZrC,ZrN,TiN,VC,TaC), отличаются очень высокими температурами плавления.

Соединения металлов IV-VI групп с кислородом, углеродом и азотом можно рассматривать и как наиболее устойчивый (в термодинамическом отношении) материал для покрытий, способный противостоять твердо- и жидкофазным диффузионным реакциям, коррозии и окислению при высоких температурах. Ниже будет показано, что свойства соединений тугоплавких металлов с О,N и С при обычных и повышенных температурах сильно зависят от многих факторов: состава (стехиометрии), наличия примесей, микроструктуры и текстуры, пористости и т.д.

Карбиды обладают рядом противоречивых свойств, что осложняет детальное изучение их физической природы. В частности, строение монокарбидов с кубической решеткой соответствует структуре типа NaCl, вместе с тем электропроводность карбидов сравнима с электропроводностью металлов. Высокая твердость карбидов проявляется за счет ковалентной связи атома углерода с атомом метала.

Наибольшая склонность к образованию энергетически стабильных конфигураций sp3 проявляются у карбидов металлов IV группы (Ti, Zr, Hf). Это обусловлено большей донорской способностью этих металлов (особенно Ti) при относительно высоком содержании углерода в карбиде (до 20%). Стабильные конфигурации карбидов атомов металлов IV группы объясняется уменьшением общего числа нелокализованных электронов sp-переходов, смещения равновесия вправо и уменьшения общего числа нелокализованных электронов: sp2 + p «sp3. Поэтому карбиды обладают повышенной жесткостью кристаллической решетки, определяющей их высокую твердость, теплостойкость и хрупкость. При переходе к карбидам V группы донорская способность металлов этой группы снижается, что приводит к снижению статистического веса устойчивости sp3-конфигурации карбидов и соответственно уменьшает соответственно твердость этих карбидов. Область их гомогенности сужается, в составе наряду с карбидами МС образуются низшие карбиды М2С с гексагональной структурой. Так например, твердость TiC равна 31.7 ГПа, а твердость TaC – 17.4 ГПа, Nb2C – 21 Гпа. У карбидов тугоплавких металлов VI группы (Cr, Mo,W) содержание углерода падает до 6%, снижается число обобществленных электронов, поэтому статический вес атомов наиболее стабильной электронной конфигурации sp3 оказывается очень низким, а свойства карбидов определяются главным образом свойствами d5-конфигурации. Связи d5 более гибкие, чем sp3, допускают упругий прогиб решетки, более свободное движение в ней дислокаций. Поэтому карбиды металлов VI группы имеют меньшую твердость и хрупкость (CrC, MoC, WC), чем твердость и хрупкость карбидов IV группы (TiC, ZrC, HfC). Так твердость CrC равна 29.5 ГПа, а твердость ZrC – 29.5 ГПа. Карбиды тугоплавких металлов V группы занимают промежуточное положение. У карбидов VI группы имеются узкие области гомогенности. Образование карбидов таких металлов связано с сильными искажениями кристаллической решетки металла (Cr) либо с нарушением порядка упаковки (Mo, W). В следствии этого, у карбидов VI могут возникать и прямые связи C-C (MoC, CrC) [5].

По своим свойствам и строению нитриды весьма похожи на карбиды, однако, между ними существуют определенные различия. Главное различие состоит в сильном снижении связи металл – неметалл из-за уменьшения ковалентности азота (трехвалентный) по сравнению с валентностью углерода (четырехвалентный).

Атом азота в нитридах, имеющий в изолированном состоянии конфигурацию валентных электронов s2p6 , может быть как донором, так и акцептором электронов. Акцепторная способность азота преимущественно проявляется при образовании нитридов металла IV-VI групп, у которых преобладает ковалентно-металлическая ионная связь. Донорские способности тугоплавких металлов IV группы (особенно Ti) в результате присоединения трех атомов азота приводят к образованию энергетически очень устойчивых конфигураций s2p6: s2p3 + 3p «s2p6 [5].

Вследствие резкого снижения донорской и роста акцепторной способности металлов VI группы (Cr, Mo, W) для этой группы может проявляться и донорская способность азота (s2p3 ® sp4 ® sp3 + p) с образованием избыточных (не участвующих в химической связи) электронов, которые снижают температуру плавления этих нитридов.

Хотя особенность конфигурационного строения нитридов переходных металлов (s2p6) свидетельствует о их высокой коррозионной стойкости (снижение склонности к твердо- и жидкофазным диффузионным реакциям), необходимо отметить меньшую термодинамическую устойчивость нитридов, по сравнению с карбидами. Практически это означает, что нитриды имеют более низкую по сравнению с карбидами сопротивляемость к высокотемпературному окислению, коррозии. Причем, при переходе нитридов металлов IV группы (TiN, ZrN, HfN) к нитридам металлов V (VN, NbN, TaN) и особенно VI группы (CrN, MoN, WN) сопротивляемость к высокотемпературному окислению снижается. Вместе с тем нитриды имеют и свои преимущества. Они более пластичны и менее хрупки, чем карбиды. Так например, предел прочности при изгибе TiN равен 240 МПа, а TiC – 15 МПа [5].

Оксиды обладают твердостью, сравнимой с твердостью нитридов. Так например, твердость TiN равна 20.5 ГПа, а твердость Al2O3 – 19.9 ГПа. Между тем, по коррозийным свойствам оксиды превосходят нитриды. Хрупкость оксидов сравнима с хрупкостью карбидов. [18]

 

1.3.4 Оборудование и технология для нанесения плазменных, вакуумных покрытий.

Вакуумно-плазменные методы нанесения покрытия в промышленности называют PVD-метод – нанесение конденсацией из паровой (газовой) фазы (англ. physical vapour deposition; сокращённо PVD) обозначает группу методов напыления покрытий (тонких плёнок) в вакууме, при которых покрытие получается путём прямой конденсации пара наносимого материала.

При физическом осаждении (PVD) материал покрытия пе­реходит из твердого состояния в газовую фазу в результате испарения под воздействием тепловой энергии или в резуль­тате распыления за счет кинетической энергии столкновения частиц материала. Энергия, распределение и плотность по­тока частиц определяются методом нанесения, параметра­ми процесса и формой источника частиц. Нанесение покры­тий методом PVD проводится при температуре до 450°С, что практически не накладывает ограничения по используемым материалам, на которые наносится покрытие. Это особен­но важно при нанесении покрытия на быстрорежущую сталь, так как температура процесса не превышает температуру от­пуска закаленной стали (около 550°С). PVD-процессы прово­дят в вакууме или в атмосфере рабочего газа при достаточно низком давлении (около 10-2 мбар). Это необходимо для об­легчения переноса частиц от источника (мишени) к изделию (подложке) при минимальном количестве столкновений с атомами или молекулами газа. Это же условие определяет обя­зательность прямого потока частиц. В результате покрытие наносится только на ту часть изделия, которая ориентирована к источнику частиц. Скорость осаждения зависит в этом слу­чае от относительного расположения источника и материала. Для равномерного нанесения покрытия необходимо система­тизированное движение материала или применение несколь­ких, определенным образом расположенных, источников. В то же время, поскольку покрытие наносится только на по­верхности "в прямой видимости источника", метод позволяет селективно наносить покрытие только на определенные части поверхности, оставляя другие без нанесенного слоя. Это аб­солютно невозможно при использовании метода химического осаждения. Основными факторами, определяющими качест­во покрытия, нанесенного методом физического осаждения, являются чистота исходных материалов и реакционного газа, а также необходимый уровень вакуума.

При PVD-методе материал покрытия внутри установки пере­водится из твердого состояния в газообразное с помощью различных физических процессов. Их можно разделить на две большие группы - процессы испарения и распыления. Испаре­ние осуществляется за счет резистивного сопротивления, ин­дукционного нагрева, электронно-лучевых пучков, низковоль­тной дуги, полого катода, катодной или анодной дуги, лазер­ного луча. Процессы могут проходить с дополнительной иони­зацией или без нее, в среде реакционного газа или без него, с напряжением смещения или без него.

Распыление бывает диодное или магнетронное, при постоянном токе или токе высокой частоты, в среде реакционного газа или без него, с напряжением смещения или без него, с дополнительной модификацией магнитного поля (несбалан­сированной или с замкнутым полем) или без нее.

Для нанесения покрытий на инструмент в подавляющем большинстве случаев применяется один из трех методов ионного осаждения. К ним относятся:

· испарение электронным пучком,

· испарение электрической дугой (метод КИБ),

· распыление (магнетронное) ионной бомбардировкой.

Процессы протекают в среде инертного газа в присутс­твии реакционного газа (например, азота и/или ацетилена) при отрицательном напряжении смещения на покрываемом материале. Для улучшения переноса частиц в камере поддержи­вается пониженное давление (меньше 10 2 бар или около 1 Па) или высокий вакуум (10~5 бар или 10"3 Па).

Поскольку покрытие наносится только на поверхности, обращенные в сторону источника частиц, покрываемый мате­риал должен совершать сложное планетарное движение. Для реализации такого движения материал помещают на специальные подставки

Практически все современные установки работают по за­мкнутому циклу, включающему:

· загрузку в очищенную камеру подставки с тщательно очищенным материалом (инструментом), на который будет наноситься покрытие;

· откачивание воздуха из камеры;

· нагрев камеры и материала внешним источником и ионной бомбардировкой (при положительном напряжении смеще­ния на материале);

· очистку материала ионным травлением (аргонно-ионным или метало-ионным) с последующим отсосом загрязнений (рис. 1.14);

· испарение или распыление и ионизацию материала "мишени" (например, титана) с одновременной подачей энергии, рабочего газа (например, аргона) и реакционно­го газа (азота для образования нитридов, углеводорода для образования карбидов и кислорода для образования оксидов); перенос частиц (ионов, атомов, молекул, элект­ронов, радикалов) в среде ионизированного газа (плазме);

· столкновение частиц с материалом и конденсацию (для улучшения процесса применяется отрицательное напря­жение смещения на материале);

· охлаждение камеры и материала;

· выгрузку подставки с материалом после выравнивания давления.

 

Рисунок 1.14 – Ионная очистка материала

При правильно подобранных параметрах процесс выпол­няется автоматически с высокой степенью надежности и вос­производимости. Обязательное условие - тщательная очис­тка материала перед нанесением покрытия, осуществляемая последовательной обработкой (отмывкой) в нескольких хими­ческих средах, частично с ультразвуковой обработкой. После этого следует промывка в чистой воде и сушка. Инструмент не должен иметь никаких следов термической обработки. Особое внимание уделяется также очистке внутренних кана­лов подвода и "дегазации" мест пайки. Для подготовки поверхности под покрытие часто применяется микроструй­ная обработка.

Рисунок 1.15 – метод испарения электронным лучом

В установках, использующих испарение электронным пучком, к катоду с тлеющей дугой подводится высокое напря­жение (1-10 кВ). В результате создается сфокусированный и ускоренный пучок электронов (около 200 А), который направ­ляется на мишень с металлическим материалом покрытия (рис. 1.15). Мишень установлена в центре горизонтально рас­положенного котла из графита, керамики или меди. К котлу подведено положительное напряжение. К противолежащей подставке с покрываемыми инструментами подведено отри­цательное напряжение, называемое напряжением смещения. Положительные ионы испаренного вещества (например, ти­тана) вступают в реакцию с реакционным газом (например, азотом) и образуют материал покрытия (нитрид титана), кото­рый осаждается на покрываемом инструменте. Камера пок­рытия изготавливается из нержавеющей стали с двойными стенками с системами нагрева и охлаждения.

Рисунок 1.16 – Метод КИБ (конденсация в условиях ионной бомбардировки)

При использовании дугового испарения зажигается электрическая дуга (рис. 1.16). В литературе метод но­сит название КИБ (конденсация из плазменной фазы в условиях ионной бомбардировки). После зажигания дуги ее перемещение по поверхности мишени, установленной в медном охлаждаемом катоде, управляется с помощью системы магнитов. Основная цель - обеспечить равномерное удаление материала с поверхности мише­ни и продлить срок ее службы. Катод устанавливается вертикально на стенки камеры, и к нему подводится отрицательное напряжение. В момент розжига дуги на поверхности мишени возникает местный расплав (рис. 1.17а). Начинается испарение металла мишени (рис. 1.17б и 1.17в), однако при испарении вместе с ионами материала также ускоряются неионизированные частицы металла (капли) (рис. 1.17г), которые также осаждают­ся на поверхность инструмента. Наличие такой капельной фазы является основным недостатком дугового метода, так как капли ухудшают качество покрытия.

Рисунок 1.17 – Образование пара и капель

На дуговых установках можно наносить композитные (состоящие из нескольких металлов) и многослойные покрытия. Для этого применяются различные катоды. На противоположных стенках камеры можно установить несколько катодов из чистых металлов (например, титана и алюминия), а можно использовать один катод из их сплава. При недостатке места можно использовать комбинированные катоды, состоящие из нескольких "чистых", сведенных на одном катодном блоке мишеней. Применение нескольких одинаковых мишеней увеличивает скорость нанесения покрытия.

Из установок, использующих метод распыления, наибольшее применение находят установки на основе магнетронов (MSIP - Magnetron Sputtering Ion Plating - ионное осажде­ние магнетронным распылением). При приложении высокого напряжения в атмосфере инертного газа (как правило, арго­на) возникает тлеющий разряд (рис. 1.18). Ионы инертного га­за из плазмы, обладающие высокой энергией, ударяются об мишень, включенную как катод. За счет ударного импульса материал распыляется, минуя промежуточную жидкую фазу. В этом случае, в отличие от установок с котлом, возможно произвольное расположение мишеней. С помощью магнитных полей (замкнутых и разомкнутых) путь электронов удлиняется (по спирали вдоль линий магнитного поля), увеличиваются плотность плазмы и ударная энергия. Позади мишени располагается магнитная система, определяющая распределение области распыления материала по всей поверхности мишени. [19]

Рисунок 1.18 – Метод магнетронного распыления

На сегодняшний день широкое распространение на территории России получила установка типа ННВ-6.6 (рисунок 1.19) для нанесения ионно-плазменным методом защитных, износостойких и декоративных покрытий из различных материалов (Ti, Zr, Cr, Mn, Al, Mo, W, их оксиды, нитриды и карбиды, сплавы). Особенности установки позволяют получать высококачественные однородные и многослойные покрытия при пониженных температурах.

Рисунок 1.19 – Схема установки типа ННВ-6.6: 1 – камера, 2 – стол вращения, 3 – электродуговой испаритель, 4 – катод, 5 – стабилизирующая катушка, 6 – фокусирующая катушка, 7 – источник питания дуги, 8 – ис-точник опорного напряжения, 9 – источник высокого напряжения, 10 – бал-лон с реакционным газом, 11 – вакуумметр, 12 – форвакуумный насос,

13 – диффузионный паромасляный насос, 14 – пирометр.

 

Корпус имеет вид вертикального цилиндрического сосуда с боковым проемом, который закрывает дверца. Он выполнен с двойными стенками, образующими полость водоохлаждения. На боковых стенках корпуса установлены два электродуговых испарителя. Корпус с дверцей образует вакуумную камеру. На дверце установлен третий электродуговой испаритель, который может быть размещен и на верхней плоскости корпуса. Вакуумная система обеспечивает создание в рабочей камере необходимого рабочего давления. Регулирование остаточного давления выполняется с помощью автоматического регулятора напуска рабочего газа. Электрическая часть служит для электроснабжения установки и управления технологическим процессом. Электроснабжение производится от трехфазной сети напряжением 380 В, цепи управления питаются напряжением 220 В и частотой 50 Гц.

Высоковольтный источник питания, включает в себя тиристорный преобразователь напряжения, высоковольтный трансформатор и выпрямитель. Источник опорного напряжения, включает в себя тиристорный преобразователь (общий с высоковольтным источником), трансформатор и выпрямитель.

Такие установки изготавливает ОАО "Электротерм-93". Они предназначены для нанесения упрочняющих покрытий на инструмент и некоторые детали машин, а также декоративных покрытий на изделия широкой номенклатуры диаметром до 400 и длиной до 250 мм способом конденсации вещества с ионной бомбардировкой в вакууме. [20] Также свыше 25 лет ОАО "ВНИИИНСТРУМЕНТ" разрабатывает и внедряет в промышленность технологии ионно-плазменного напыления на режущий инструмент на установках типа ННВ 6.6 ("Булат") (рисунок 1.20). Наноградиентные покрытия из сепаративной плазмы дугового разряда – новое направление в PVD технологии. Полный комплект технологий и оборудования для осаждения ионно-плазменных твердых защитных покрытий на основе элементов: Ti, Al, Zr, Cr, Mo, Ni, C и др., и газов: N2, Ar, CnHk, O2, H2. В основу технологии положено сепарирование плазменного потока. [21]

 

Рисунок 1.20 – Установка ННВ6.6 с сепаратором.

Состав установки включает в себя все необходимые части и узлы, для синтеза твердых, износостойких пленочных покрытий на основе соединений металлов, азотирования (азотирование - только для сталей HS, HSS, HSSE).

Существует также модернизированные установки ННВ6.6 с двухярусными испарителями для нанесения на более габаритные инструменты (рисунок 1.21). [21]

Рисунок 1.21 – Установка ННВ 6.6 И4 модернизированная двухъярусная.

 

В России кроме ННВ6.6 существует участок НПО «Сатурн» ионно-плазменных покрытий, который оснащен специальным оборудованием для нанесения жаростойких покрытий на трактовые поверхности рабочих и сопловых лопаток газотурбинной техники методом ВЭПТВ на установках МАП. [22]

ОАО НПО «ЦНИИТМАШ» изготавливает промышленную установку NanoARCmaster (Рисунок 1.22). Она предназначена для ионного нанесения однослойных, многослойных, нанослойных и нанокомпозитных защитных и триботехнических покрытий на детали машин и режущий инструмент методом ионного осаждения с дуговым испарением. Для каждого типа инструментов и деталей рекомендованы определенные типы покрытий, запрограммированы стандартные режимы их нанесения. [23]

Магнетронная модификация оборудования позволяет наносить как однокомпонентные, так и многокомпонентные составы, в частности припои, подложки для пайки, заменять гальванические, а так же наносить жаростойкие покрытия.

Рисунок 1.22 – Установка NanoARCmaster

 

Современные высокотехнологичные вакуумно-дуговые установки максимально возможно снижают размеры и количество капельной фазы. [23]

Один из мировых лидеров в этом секторе является Швейцарская фирма «Платит». Он занимается упрочнением режущих инструментов и быстроизнашиваемых деталей машин. «Платит» производит оборудование для нанесения покрытий, основанное на плазме. [24]

Покрытие наносится методом дугового испарения и магнетронным методом. С дуговым испарением производится такие установки как PL70, PL1001, PL2001. А так же имеется новые установки с боковыми вращающимися катодами (LARC®) и с центральными вращающимися катодами (CERC) ПЛАТИТ π80 и π300.

а б

Рисунок 1.23 – установка ПЛАТИТ π80 и π300. а - LARC® (боковые вращающиеся катоды) б - CERC® (Центральные вращающиеся катоды).

С помощью таких технологий наносят следующие покрытия:

* Стандарт: TiN, TiAlN, AlTiN

* Дополнительный: TiCN-MP, TiAlCN, GRADVIC®, GRADVIC2®, ZrN, CrN, CROMVIC®, CROMVIC2®, nACRo

* Nanocomposite:nACo®, nACRo®, nATVIc®, nATTIVIc®, Fi-VIc®, Fi-TIVIc2®, nACRo®, nACVIc®

* Тройное покрытие: nACRo3, nATRCo3, nACo3®

* Монослои, Мультислои, нанослои, нанокомпазиционные, и их комбинации

Структура тройного покрытия nACRo3 показано на рисунке 1.24. [24]

 

Рисунок 1.24 – Покрытие nACRo3 полученное на установке ПЛАТИТ π300 CERC технологией CERC

В Германии существует производство установок для нанесения ионно-плазменных покрытий (PVT Plasma und Vakuum Technik GmbH), которые имеют достойное место на мировом рынке сPVD технологиями нанесения покрытий под вакуумом. Дуговое испарение и магнетронный способ – самые универсальные методы осаждения в PVD для самого широкого диапазона материалов. Обе технологии используются, например, для нанесения покрытий тонкой пленки из AlTiN, TiAIN, TiCN, TiN, CrN, ZrN и т.д. Покрытия наносятся на карбид вольфрама, сталь, металлические подложки, пластмассы и керамику.

Установка PVT S2/ARCявляется индустриальной небольшого размера вакуумной системой для нанесения покрытия. [25]

Рисунок 1.25 – Установка PVT S2/ARC

 

1.4 Вывод по аналитическому обзору

 

На основании проведенного обзора литературы можно сделать следующий вывод:

1) На основании литературной проработки по методам нанесения износостойких покрытий на режущий инструмент показано, что нанесение износостойкого покрытия на инструментальные материалы позволяют приблизиться к созданию «идеального» материала, обладающей высокой износостойкостью в сочетании с достаточной прочностью и вязкостью. Он может удовлетворить самым высоким требованиям, предъявляемым к качеству, производительности и надежности.

2) Самым универсальным и эффективным среди существующих методов упрочнения является вакуумно-плазменное нанесение твердых покрытий.

3) В кожевенно-меховом производстве, в результате изнашивания, режущая кромка инструмента теряет свою первоначальную форму и, как следствие, режущую способность. Для восстановления режущей способности инструмента производится затачивание его рабочих поверхностей. В процессе затачивания инструмента с его рабочей части срезаются довольно большие слои дорогостоящего инструментального материала. Кроме того, на смену затупившегося инструмента затрачивается время, которое увеличивает продолжительность операции механической обработки, а следовательно и ее стоимость. Операция обработки резанием в кожевенно-меховом производстве используется от подготовительных операций до финишной обработки полуфабриката, поэтому, задача уменьшения интенсивности изнашивания режущих инструментов и увеличения срока его службы остается одной из задач кожевенно-мехового производства.

 

2 Выбор направления исследования

 

Один из проблем кожевенно-мехового производства – это быстрое изнашивание режущих инструментов и деталей технологического оборудования. В процессе работы режущего инструмента, основная нагрузка приходится на его рабочую поверхность, что, в конечном счете, приводит к частичному или полному износу.

Такие затраты сказываются на себестоимости продукции. Таким образом, увеличение работоспособности и ресурса работы инструментов и быстроизнашиваемых деталей приводит к снижению себестоимости продукции. Операция обработки резанием в кожевенно-меховом производстве используется от подготовительных операции до финишной обработки полуфабриката, поэтому целесообразно использовать упрочненные режущие инструменты.

Обеспечить максимизацию работоспособности режущего инструмента, значит повысить рост производительности труда, сэкономить дорогостоящий материал, энергию и трудовые ресурсы. Работоспособность режущего инструмента может быть повышена благодаря такому изменению поверхностных свойств инструментального материала, при котором контактная поверхность инструмента будет наиболее эффективно сопротивляться абразивному, адгезионному, коррозийно-окислительному и др. видам износа как в нормальных, так и в агрессивных средах. Так же инструментальный материал должен обладать достаточным запасом прочности при сжатии, изгибе, приложении ударных нагрузок. Большинство инструментальных материалов обладают лишь несколькими из указанных выше свойств, что резко снижает их область применения. Например, инструменты из быстрорежущей стали обладают относительно высокой теплостойкостью, средней твердостью, небольшими прочностью при изгибе и ударной вязкостью; керамические режущие инструменты имеют повышенную твердость, износостойкость и высокую теплопроводность, но им присущи низкая ударная вязкость и повышенная хрупкость.

На сегодняшний день существует множество технологии обработки поверхности направленное на его упрочнение, наиболее универсальным из которых является метод нанесения на поверхность инструмента покрытий из сверхтвердых соединений. Современные методы упрочнения позволяют повысить износостойкость инструмента в 2 и более раза.

В настоящее время большое внимание уделяется получению и изучению свойств наноструктурных и микрокристаллических материалов, обладающих мелкозернистой, с характерными размерами от единиц до десятков нанометров, микроструктурой, предназначенных для работы в различных областях техники. Среди существующих методов получения таких материалов особый интерес представляют тонкие микронанокристаллические покрытия, полученные в вакууме различными методами физического осаждения, а именно, магнетронным распылением и вакуумно-дуговым осаждением (метод КИБ). Метод КИБ, технологически доступен и позволяет управлять свойствами инструментальных материалов в широких пределах и достигать требуемых эксплуатационных характеристик.

С помощью метода КИБ применяя нанотехнологии наносят самые современные покрытия, например, нанокомпазиционныe, наноградиентные, наноструктурированные, покрытия с монослоями, с нанослоиями,нанокристаллические и др. покрытия, а так же покрытия с упрочняющими наночастицами.

Поэтому представляет интерес получение и изучение упрочняющих покрытий с нанофазой методом ионно-плазменной конденсации в вакууме и нанесение такого покрытия на режущие инструменты используемые в кожевенно-меховом производстве.

 

3. Объекты и методы исследования

3.1 Номенклатура и характеристики режущих инструментов используемые в кожевенно-меховых производствах

На современных кожевенных заводах и меховых фабриках применяются десятки типов машин и аппаратов. Только для удовлетворения потребностей кожевенной промышленности требуется до 90 типов технологического оборудования. Постоянно совершенствуется технология и продолжается технологическое перевооружение отрасли. Современные предприятия оснащаются новыми машинами и аппаратами, в которых используется последние достижения науки и техники, не только Российского производства, но и зарубежного. Из зарубежных стран в основном машины, с обработкой резанием, поставляет Турция фирма «Оздерсан», Италия «Рици». Стационарные ножи рубильных и стригальных машин изготавливает Германия, которые используется в турецких и российских машинах.

В данной работе для определения стойкости в производственных условиях покрытие наносили на дисковый нож от мездрильной машины ДМ-3М. Дисковые ножи в России изготавливает ООО «Самара ЗИМ-Инструмент» из стали 9ХФ.

В таблице 3.1 указаны режущие инструменты используемые в кожевенно-меховых производствах ОАО «Мелита», ООО «Меховщик» и ОАО «Сафьян».

Таблица 3.1 - Номенклатура и характеристики режущих инструментов используемые в кожевенно-меховых производствах.

Наименование Размеры, мм Материал Условие, среда работы Твердость материала по Раквеллу
         
Дисковый нож от машины ДМ-3М Ø300 9ХФ рН от 7 до 10 60÷70
Разбивочный нож от машины РМ-2 106х140 Р6М5 нейтральная 55÷60

Продолжение таблицы 3.1

         
Ленточный нож от машины «Рици» SR-1800 Ширина прохода-1800 X15Cr13 EN1.4024 рН 8÷9 вода 55÷65
Винтовой нож мездрильной машины ММ-1625 Ширина прохода-1625 У8А рН 8÷9 вода 60÷70
Винтовой нож мездрильной машины Оздерсан 1200 Ширина прохода-1200 S12-1-4-5 EN 1.3202 рН 8÷9 вода 65÷75
Винтовой нож мездрильной машины «Рицци» SG-3-2200 Ширина прохода-2200 S12-1-4-5 EN 1.3202 рН 8÷9 вода 55÷60
Винтовой нож строгальной машины МСГ600-3-КРЭ Ширина прохода-600 У8А рН 4÷6   60÷70
Винтовой нож строгальной машины «Рицци» RLA-1300 Ширина прохода-1300 S12-1-4-5 EN 1.3202 рН 4÷6 55÷60
Стационарный нож рубильной машины МР-1200-1М Длина-1400 У8А нейтральная 40÷55
Стационарный нож стригальной машины Оздерсан-1250 Длина-1450 S6-5-2 EN 1.3343 нейтральная 56÷60
Стационарный нож стригальной машины КСМ2-1200 Длина-1400 У8А нейтральная 58÷60

 

3.2 Оборудование для нанесения покрытий

Фотография оборудования для нанесения покрытий на рисунке 3.1.

Рисунок 3.1 - Вакуумная установка ионно-плазменного напыления ННВ 6,6 И1.

Установка состоит из вакуумной камеры, вакуумной системы, дуговых испарителей, системы натекания газа, системы вращения изделий, электрических источников питания дуги, опорного напряжения, напряжения очистки, системы измерения вакуума, системы охлаждения и подогрева камеры, системы автоматики и блокировок, системы измерения токов, напряжений и контроля температуры. Вакуумная камера предназначена для крепления основных узлов установки и размещения в ней изделий. Она герметична, имеет герметичную дверцу, герметические электроизолированные вводы вращения, фланцы для присоединения вакуумной системы, дуговых испарителей, приборов контроля вакуума и температуры. Имеет смотровые окна, рубашку водяного обогрева и охлаждения. Вакуумная система состоит из форвакуумного золотникового или роторно-пластинчатого насоса. Насосы обеспечивают достижение среднего вакуума 10-2- 10-3 мм. рт. ст. По обходной байпасной магистрали через вакуумные вентили насосы связаны с вакуумной камерой и паромасляным диффузионным насосом высокого вакуума. Высоковакуумный затвор имеет выход в камеру установки.

Установка имеет один или несколько дуговых испарителей, предназначенных для создания и подачи в камеру (на изделие) потока металлической плазмы. Испарители имеют герметический водоохлаждаемый корпус, в глухом конце которого расположен изолированный от корпуса и водоохлаждаемый катод. У катода имеется система инициирования дуги. Имеется система ее стабилизации в виде катушки соленоида, намотанной поверх корпуса испарителя. Далее по потоку плазмы расположена фокусирующая катушка. Анодом служит корпус дугового испарителя.

Система натекания газа предназначена для поддержания в камере определенного давления одного или нескольких реагирующих газов. От давления реагирующего газа зависит концентрация азотной плазмы при протекании плазмохимической реакции синтеза, например, нитрида. Простейшие натекатели состоят из игольчатого вентиля с калиброванным отверстием и газовым редуктором. Такие системы не способны поддерживать давление в камере с высокой точностью, для них характерен дрейф давления. Современные натекатели имеют электронно- механическое устройство, связанное с системой измерения вакуума. Газ в таких натекателях подается порциями электромеханическим клапаном, длительность открытия которого регулируется автоматической системой, связанной с задатчиком давления через вакуумметр.

Система вращения изделий состоит из планетарного механизма вращения с гнездами или подвесками. Вращатель расположен в камере, электрически изолирован от камеры и имеет вакуумный ввод вращения. Планетарная система вращения способствует более равномерному покрытию изделий защитным покрытием.

Электрические источники питания дуги, опорного напряжения, напряжения очистки оформлены отдельными блоками, имеют специальные нагрузочные характеристики и общую мощность 20-50 кВт. Кроме того, установки имеют источники поджига дуги, питания стабилизирующих и фокусирующих катушек и другие источники. Источник питания дуги имеет постоянное напряжение холостого хода 80-100 В, рабочее напряжение 25-40 В при рабочем токе 50-200 а. Источник имеет крутопадающую нагрузочную характеристику.

Источник опорного напряжения имеет жесткую нагрузочную характеристику. Дает регулируемое напряжение постоянного тока от 0 до 300 В при токе до 10 А. Снабжен электронным устройством защиты от короткого замыкания, как защита от микродуговых разрядов на изделии. Источник питания ионной очистки дает постоянное регулируемое напряжение от 100 до 2000 В при токе до 20 А, имеет жесткую нагрузочную характеристику, снабжен системой защиты от коротких замыканий и прерывания микродуговых разрядов.

Система измерения вакуумасостоит обычно из термопарного для низкого вакуума и ионизированного для высокого вакуума приборов. Термопарная часть вакуумера измеряет вакуум до 10-2 мм. рт. ст. и не боится напуска системы воздухом. Низкий вакуум обычно измеряется на входе вакуумной магистрали. Ионизационная часть вакуумметра измеряет вакуум от 10-2 до 10-7 мм. рт. ст. Высокий вакуум измеряется в камере установки и измерительная система связана с блокировками по вакууму.

Система охлаждения и прогрева камеры предназначены для отвода тепла при работе установки в режиме конденсации покрытия и прогрева камеры перед её открыванием для исключения конденсации на стенках камеры влаги. Система состоит из трубопроводов, электроклапанов, реле протока и подогрева воды.

Система контроля температуры изделий включает смотровое окно со шторкой, разделяющее вакуум камеры и окружающую среду.

Система автоматики и блокировок предназначена для исключения неправильных действий персонала при работе на установке. Блокировки предотвращают образование аварийной ситуации, соблюдение условий техники безопасности, отключение установок в аварийных ситуациях. Так, например, блокировки не позволяют оператору открыть высоковакуумный затвор при наличии в камере атмосферного давления, или подать на изделие высокое напряжение при открытой дверце вакуумной камеры.

Установка снабжена контроль- измерительными приборами, по показаниям которых судят о режиме ее работы. Контролируется ток дуги, ток фокусировки и стабилизации, опорное напряжение. Некоторые установки снабжаются блоками автоматического набора вакуума, управления дугой, очисткой и т.д. Последние модели снабжены микропроцессорной техникой, позволяющей полностью по заданной программе производить нанесение покрытий.

 

3.3 Методика нанесения покрытий на инструменты

 

Покрытия на инструмент наносятся методом конденсации из плазменной фазы в условиях ионной бомбардировки (метод КИБ) на вакуумной установке ионно-плазменного напыления ННВ 6,6 И1.

Важной особенностью метода КИБ является образование интенсивных ионизированных потоков испаряемого дугой металла. В процессе осаждения поверхность растущего покрытия подвергается интенсивной ионной бомбардировке. В результате происходит повышение температуры поверхности и соответственно активация плазмо-химических реакций металла с азотом в зоне формирования покрытия.

Метод конденсации покрытий из плазменной фазы в условиях ионной бомбардировки основан на взаимодействии в плазменном состоянии (плазмохимические реакции) металлической плазмы элементов III, IV группы и некоторых других элементов таблицы Менделеева с плазмой химических элементов IV,V групп.

Покрытия КИБ получают следующим образом. В вакууме (10-3 мм.рт.ст.) горит на катоде вакуумная дуга. Катод изготовлен из металла III, IV группы, например, титана. В катодных пятнах дугового разряда достигается температура 104 К. Катод имитирует электроны, металл катода при этом испаряется и частично ионизируется в электрополе дугового источника. Поток электронов течет в сторону анода (корпуса), а ионы испарившегося материала- катода бомбардируют катод.

За счет потока электронов с катода, металлической плазмы и остаточной газовой металлической плазмы в промежутке анод-катод поддерживается электропроводность и течет электрический ток. Металлическая плазма и пары материала катода за счет газодинамических сил, обусловленных разностью давлений в дуговом испарителе и камере, истекают в рабочее пространство вакуумной камеры. Здесь находятся изделия, на поверхность которых необходимо конденсировать покрытие, например, из нитрида титана. Изделие находится под отрицательным потенциалом, создаваемым специальным источником. Под действием электростатических сил ионы титана (металлическая плазма) движутся в сторону изделия. Энергия металлической плазмы легко регулируется величиной потенциала изделия, а размеры потока плазмы легко регулируются магнитным полем фокусирующей катушки электродугового испарителя. В вакуумной камере находится реагирующий газ- азот при давлении около 10-3 мм.рт. ст. под действием металлической плазмы азот ионизируется и его ионы вступают в реакцию с ионами металла, образуя на поверхности изделия покрытие нитридов. Для того, чтобы пленка нитрида была по плотности близкой к 100%, процесс организуют так, что ионы металла катода постоянно бомбардируют изделие, повышая его температуру до 300-600 ˚С и уплотняя покрытие.

Равномерность покрытия изделия обеспечивается вращением изделия в вакуумной камере или пространственным расположением нескольких дуговых испарителей в камере.

 

3.4 Характеристика применяемых материалов

Спирт этиловый ректификат ГОСТ 8300-72

Бензин БР-1 («Галоша») ГОСТ 443-76

Азот газообразный (ГОСТ 9293-74)- инертный газ без цвета и запаха плотностью 1,25046 кг/м при 0 °С и давлении 101,3 кПа. Удельный объем газообразного азота равен 860,4 дм/ кг при давлении около 10 Па и температуре 290 К.

Титан ВТ1-00 серебристо- белый металл. Химический символ Тi.

Относительная атомная масса- 47,88± 0,03

Температура плавления -1671 ˚ С

Температура кипения – 3260 ˚ С

Нитрид титана – условная химическая формула Ti2N - TiN

Содержание неметалла, % (по массе) - 10- 22,6

Температура плавления – 2950 ˚С

Бязь марки х/б ГОСТ 1108-74

 

3.5 Методики определения характеристик инструмента с покрытием

 

Определение микротвердости покрытия.

Метод определения микротвердости предназначен для оценки твердости очень малых (микроскопических) объемов материалов. Его применяют для измерения твердости мелких деталей, тонкой проволоки или ленты, тонких поверхностных слоев, покрытий и т. д. Главное назначение — оценка твердости отдельных фаз или структурных составляющих сплавов, а также разницы в твердости отдельных участков этих составляющих.

Метод стандартизован (ГОСТ 9450—76). В качестве индентора при измерении микротвердости чаще всего, как и в случае определения твердости по Виккерсу, используют правильную четырехгранную алмазную пирамиду с углом при вершине 136°. Эта пирамида плавно вдавливается в образец при нагрузках 0,05—5Н. Число микротвердости Нм, МПа, определяется по формуле:

HV= 1,854∙105 ∙F/d2

где F — нагрузка, Н; d – диагональ отпечатка; 1,854 — площадь боковой поверхности полученного пирамидального отпечатка.

По ГОСТу число микротвердости. МПа, записывают без единицы измерения, например HV=1050. Микротвердость массивных образцов измеряют на металлографических шлифах, приготовленных специальным образом. Глубина вдавливания индентора при определении микротвердости (d/7) составляет несколько микрометров и соизмерима с глубиной получаемого в результате механической шлифовки и полировки наклепанного поверхностного слоя. Поэтому методика удаления этого слоя особенно важна.

Рисунок 3.2 - Микротвердомер ПМТ-3

Образец устанавливается на основание (стеклянную или металлическую плоскую пластину) через подложку из пластилина, обеспечивающую, с помощью специального пресса, параллельность поверхности шлифа и плоскости стола прибора ПМТ-3, находящегося в положении измерения микротвердости (повернут до упора по часовой стрелке)


Дата добавления: 2015-08-05; просмотров: 424 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Введение| Исторические корни дипломатической службы

mybiblioteka.su - 2015-2024 год. (0.073 сек.)