Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Задание № 3. Поэлементное количественное и порядковое соответствие

Читайте также:
  1. II Задание
  2. V. Задание на дом
  3. V. Задание на дом
  4. Аутентичность — соответствие внутреннего содержания внешнему проявлению
  5. В СООТВЕТСТВИЕ С ЗАКОНОМ 99-ФЗ
  6. В СООТВЕТСТВИЕ С ПОТРЕБИТЕЛЬСКИМ КООПЕРАТИВОМ
  7. В СООТВЕТСТВИЕ С ТОВАРИЩЕСТВОМ СОБСТВЕННИКОВ НЕДВИЖИМОСТИ

На стол ставят б маленьких бутылок (бутылки длиной в 2 — 3 см для игр с куклами), выстраивают их в ряд и показывают испытуемому поднос с набором стаканов:

«Посмотри. Это бутылочки. Что нужно, чтобы из них вы­пить? — Стаканы! — Хорошо. Вот стаканы. Возьми с под­носа столько же стаканов, сколько стоит бутылок, по ста­кану на бутылку». Ребенок сам строит соответствие, ставя стакан перед каждой бутылкой. Если он ошибается (в ту или иную сторону), его спрашивают: «Ты думаешь, что поровну?» Этот вопрос повторяют до тех пор, пока не убедятся, что ребенок сделал все, на что способен на дан­ном уровне развития. Достижение соответствия можно облегчить, предлагая переливать содержимое бутылок в стаканы: каждая бутылочка заполняет один стакан. Как только соответствие устанавливается, все 6 стаканов сдви­гают в небольшую груду и снова спрашивают: «А сейчас стаканов и бутылок поровну?» Если ребенок говорит:

«Нет», то продолжают: «Где больше?» и «Почему здесь больше?» Затем стаканы снова расставляют в ряд, а бу­тылки сдвигают в груду и т. д., при этом каждый раз по­вторяют вопросы.

Результаты будем классифицировать по трем стадиям, для которых характерно следующее: I. Отсутствие по­элементного соответствия и эквивалентности. П. Нали­чие поэлементного соответствия, но без прочной экви­валентности. III. Наличие соответствия и прочной экви­валентности.


(Могут быть примеры с яйцами и подставками, вазами и цветами). Соответствие между монетами и купленными предметами (Протокол № 3).

Задание № 4. Исследование качественного подобия и порядкового соответствия (Протокол № 4)

Пусть дан, например, ряд кукол-человечков, различа­ющихся по росту, и ряд тросточек различной длины; тро­сти и куклы приводятся в соответствие по их размерам. причем это соответствие рангов всегда можно легко вновь обнаружить после смешения обеих совокупностей. Здесь возможны три операции: простая качественная сериация, качественное соответствие между двумя сериациями (по­добие) и числовое (порядковое) соответствие между дву­мя сериями.

В качестве контрольных материалов используются гли­няные шары для лепки, тоже заметно различающиеся по объему.

Ребенку рассказывается нечто вроде истории с прогул­кой, с мотивировкой соответствия, но без явной ссылки на рост: «Расставь человечков и трости так, чтобы человеч­ки быстро смогли найти каждый свою трость». И, конечно, наставление продолжается до тех пор, пока ребенок не поймет принцип сериального соответствия. После построе­ния соответствующих друг другу двух рядов на глазах у ре­бенка их преобразуют следующим образом: оставив два ряда параллельными, сдвигают друг с другом куклы, уплотнив шары и трости так, чтобы соответствующие члены ряда кукол и ряда тростей более не находились друг перед дру­гом. И тогда, указав пальцем на какую-нибудь куклу, спра­шивают: «С какой тростью гуляет эта кукла?» Эти вопросы ставят, указывая на куклы и трости либо в их последова­тельном порядке, либо перескакивая с одного предмета на другой, в зависимости от ответов ребенка. Таков второй рассматриваемый в этом эксперименте вопрос.

Третий вопрос: после нескольких опытов предыдущего типа один из двух рядов (например, ряд тростей) подвер­гают инверсии (переворачивают задом наперед) таким образом, чтобы ряды продолжали оставаться параллель­ными, а наименьший член одного из рядов оказывался напротив наибольшего члена другого ряда и наоборот. После этого перед ребенком ставят те же вопросы, что и во время предыдущего опыта.

Четвертый вопрос: перемешивают члены одного из рядов, оставив другой ряд сериированным, или (в зави­симости от уровня развития ребенка) перемешивают оба ряда одновременно и просят испытуемого определить, какой шар или какая трость соответствует одной из кукол или наоборот.

Наконец, можно уточнить уровень понимания ребенка в форме пятого вопроса: смешиваем элементы обоих ря­дов, затем показываем определенную куклу (например, шестую), говоря: «Теперь куклы пойдут гулять, но не все, а только те, которые больше (или меньше), чем эта. По­этому найди трости для тех кукол, которые идут гулять, и для тех, которые остаются дома».

Систематизация полученных ответов сводится к трем проблемам: к проблеме построения сериального соответ­ствия, когда оно непосредственно уже не воспринимает­ся, и следовательно, проблеме перехода к порядковому соответствию (вопросы второй и третий) и проблеме вос­становления порядкового соответствия, когда наглядные серии нарушены (вопросы четвертый и пятый). (Протоко­лы № 5 - 7.)

Задание № 5. Исследование аддитивной композиции клонов и отношения клона и числа (Протоколы № 8 — 9)

Нужно было изучить отношение логического объема между терминами «некоторые» и «все» для выявления эле­мента квантификации, присущего любому сложению (как сложению клонов, так и сложению чисел). В этой связи мы провели ряд следующих опытов. Пусть имеется сово­купность индивидуальных предметов В, образующих ло­гический класс, который можно определить чисто каче­ственными терминами, и часть этой совокупности А, об­разующая подкласс, также определяемый качественными терминами. Проблема состоит в ответе на вопрос: «Боль­ше» ли элементов в общем классе В, чем во включенном классе А (другими словами, является ли класс В больше или «многочисленнее» подкласса А)?»

Возьмем, например, коробку с одними только дере­вянными бусинками (класс В), большинство которых (ко­ричневые бусинки — класс А), по две бусинки белые (бе­лые бусинки — класс А). Ребенку предлагается вопрос:

«Чего больше в коробке: деревянных бусинок В или ко­ричневых бусинок А?»


Задавали вопрос в еще более наглядных терминах. С од­ной стороны, мы спрашивали, какие из двух бус были бы самыми длинными: бусы, которые можно было бы сделать из деревянных бусинок (В) или из коричневых бусинок (А). При этом для лучшего уяснения разницы между А и В мы предварительно ставили рядом с коробкой с бусинками две пустые коробки и уточняли: «Если я выну коричневые бусинки и положу их сюда (первая пустая коробка), то ос­танутся ли бусинки в коробке (в полной)?» И еще: «Если я выну деревянные бусинки и положу их сюда (вторая пустая коробка), то останутся ли..?» И т. д.

Предлагалась также совокупность цветов (класс В), содержащая два десятка маков (класс А) и два или три василька (класс В), после чего спрашивали: «Какой букет будет самым большим: из всех цветов или из всех маков?» И т.д.

Задание № 6. Исследование аддитивной композиции чисел и арифметического соотношения части и целого (Протоколы № 10 — 11)

Мы будем последовательно применять три параллель­ных метода. Первый из них ставит своей целью устано­вить, способен ли ребенок понимать тождество целого в ходе различных аддитивных композиций его частей, на­пример: (4 + 4) = (1 + 7) = (2 + 6) = (3 + 5).

Конкретные условия эксперимента выглядят следующим образом. Ребенку объясняют, что его мама даст ему 4 кон­феты (и кладут 4 фасолины, расположенные квадратом) к завтраку в 10 часов, а 4 другие конфеты (расставленные таким же образом) к четырем часам; на следующий день ему дадут столько же конфет (располагают так же два квад­рата по 4 конфеты каждый), но так как в один из дней он менее голоден в 10 часов, чем в 4 часа, то в этот день он съедает утром только одну конфету, а все другие после обеда. На глазах у ребенка берут 3 конфеты третьего квад­рата и прибавляют их к четвертому, а затем предлагают ему сравнить обе кучки (4 + 4) и (1 + 7), спрашивая, поровну ли он съест конфет в оба дня или нет.

Что произойдет в том случае, когда между двумя цело-стностями потребуется произвести обмен, при котором часть первой целостности будет вычитаться ребенком и прибавляться к другой целостности? В этой связи ребенка просят уравнять две неравные величины.

Для этой цели ребенку дают две неравные совокупно­сти, например, состоящие из 8 и 14 жетонов, и предлага­ют ему: «Сделай так, чтобы жетонов было поровну» или «чтобы в той и другой кучке было столько же» (или «столь же многоо, в зависимости от словаря испытуемого). Для стимулирования рассказывают какую-нибудь историю, связанную с делением.

Когда ребенок заканчивает свои опыты уравнения, то от него сначала добиваются подтверждения («теперь по­ровну?»), затем, если неудача оказывается устойчивой, переходят к меньшим величинам или к опыту с более лег­ким вопросом, связанным с делением. Важно отметить, что операции уравнивания сами по себе недостаточны для полного анализа аддитивной композиции, и поэтому не­обходимо сравнивать их с дополнительными операциями деления.


Дата добавления: 2015-08-05; просмотров: 67 | Нарушение авторских прав


Читайте в этой же книге: В каком порядке появляются эмоции | ПОНЯТЬ, ПРОТИВОСТОЯТЬ И УПРАВЛЯТЬ ИМ. - СПб., 1994 | С. 32. Гл. Формирование эмоциональной регуляции в ран­нем онтогенезе. | Анализ результатов | Стимульный материал к опроснику общих эмпатийных тенденций | Стимульный материал к опроснику экспресс-диагностики эмпатии | Лист ответов опросника экспресс-диагностики эмпатии | Опросник | Задание № 8. Анкета психофизиологического комфорта | В СБ.: ИЗБРАННЫЕ |
<== предыдущая страница | следующая страница ==>
БИБЛЕР В. С. МЫШЛЕНИЕ КАК ТВОРЧЕСТВО (ВВЕДЕНИЕ В ЛОГИКУ МЫСЛЕННОГО ДИАЛОГА). - М., 1975| Протокол № 2

mybiblioteka.su - 2015-2024 год. (0.006 сек.)