Читайте также:
|
|
Рассчитаем временные зависимости токов транзистора [1], принимая, как и ранее, что напряжение на входе является гармоническим
,
(1.14)
В соответствии со схемой, приведенной на рис.1.15, для определения формы импульсов токов ,
необходимо найти зависимость
. Составим уравнение для
, полагая
.
Введем постоянные времени входной цепи открытого и закрытого транзистора
,
(1.15)
и параметр .
Угол отсечки называется низкочастотным, так как он определяет отсечку тока коллектора при
. Заменив в (1.7) нелинейную зависимость
кусочно-линейной (1.8), получим дифференциальное уравнение относительно
для открытого и закрытого транзистора
; (1.16)
.
При напряжение на переходе
в области отсечки равно входному и транзистор открывается при
. В этот момент
становится равным
и продолжает возрастать. Поэтому вступает в силу первое уравнение (1.16). Его решение при начальном условии
имеет вид
, (1.17)
где .
Решение содержит вынужденную (первое слагаемое в фигурных скобках) и свободную
(второе слагаемое) составляющие. Амплитуда
и фаза
вынужденной составляющей определяются модулем и фазой коэффициента передачи напряжения
в активной области:
(1.18)
Временные диаграммы напряжения на переходе , его составляющих и токов
,
,
рассчитанные при
по (1.9), (1.10), показаны на рис.1.16.
Из рис.1.16, а видно, что транзистор открывается в момент , когда
. На низких частотах
транзистор закрылся бы при
. Однако на высоких частотах импульс напряжения
в активной области и повторяющий его форму импульс тока
(1.9) имеют затянутый фронт (
при
), что обусловлено процессом заряда диффузионной емкости. Максимумы этих импульсов запаздывают относительно максимума
на угол
, несколько меньший величины
. В результате транзистор запирается позже, при
, и импульс тока
расширяется.
Базовый ток на рис.1.16,г построен как сумма двух составляющих, одна из которых пропорциональна напряжению , другая - производной от него.
Первая составляющая есть ток через сопротивление
, вторая
- зарядный ток диффузионной емкости, причем
, когда
, т. е. емкость разряжается. Это обусловливает отрицательный выброс в токе базы.
Отрицательный выброс наблюдается и в эмиттерном токе, поскольку (рис.1.16,д).
Характерным для рассматриваемых диаграмм является момент, соответствующий углу , когда напряжение на переходе
и ток коллектора
принимают максимальные значения. Угол
определяется из условия
. При
первое слагаемое в (1.16) пропадает, что позволяет записать
, (1.19)
откуда согласно (1.9) и равенству получим
Рисунок 1.16 – Временные диаграммы напряжения на входе , эмиттерном переходе
, токов коллектора
, базы
и эмиттера
при возбуждении биполярного транзистора от генератора напряжения
Зависимости угла запирания , момента максимума
от угла отсечки
при разных значениях
приведены на рис.1.17.
Штрихпунктирными линиями показаны границы перехода транзистора в линейный режим работы (класс А). Как видно, при уменьшении угла отсечки ,
уменьшаются от своих граничных значений до нуля при
.
Рисунок 1.17 – Зависимости угла запирания (сплошные линии),
момента максимума (штриховые линии) от угла отсечки
Дата добавления: 2015-08-03; просмотров: 115 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Нелинейная модель биполярного транзистора | | | Модели биполярных и полевых транзисторов |