Читайте также:
|
|
Пусть необходимо выявить влияние на устойчивость САУ, например, коэффициента усиления K. Приведем характеристическое уравнение к виду D(p) = S(p) + K N(p), выделив члены, не зависящие от K в полином S(p), а в остальных членах, линейно зависящих от K, вынесем его за скобки. Граница D -разбиения задается уравнением
D(j ) = S(j ) + K N(j ) = 0, => K = -S(j )/N(j ) = X() + jY().
Изменяя w от - до + , будем вычислять X() и Y() и по ним строить точки границы D -разбиения. Пространство коэффициентов представляется системой координат X-Y (рис.83а). Обычно строят только половину кривой ( = [0, + ), другую половину достраивают симметрично относительно вещественной оси.
Если в плоскости корней двигаться вдоль мнимой оси от - до + и штриховать ее слева (рис.95 б), то это будет соответствовать движению вдоль линии D -разбиения при изменении w от - до + и штриховке ее также слева. Переходу корня в плоскости корней из штрихованной полуплоскости в нештрихованную вдоль стрелки 1 соответствует аналогичный переход через границу D -разбиения вдоль стрелки 1, и наоборот. Если пересекается область с двойной штриховкой (точки A, В, C), то в плоскости корней мнимую ось пересекает пара комплексно сопряженных корней.
Если известно количество правых корней, соответствующее хотя бы одной D -области, то двигаясь от нее через границы с учетом штриховок, можно обозначить все остальные области. Область с наибольшим количеством штриховок является претендентом на область устойчивости. Нужно взять любую точку из этой области и при соответствующем значении K проверить систему на устойчивость любым методом.
Есть одна особенность. Так как K - вещественное число, то Y() = 0, поэтому нас интересует не вся область устойчивости, а лишь отрезок вещественной оси в этой области, то есть K = X().
Дата добавления: 2015-08-05; просмотров: 169 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Теоретическое обоснование метода D-разбиений | | | Оценка переходного процесса при ступенчатом воздействии. |