Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основы теории конвективного теплообмена

Читайте также:
  1. А. Нормативное применение теории рационального выбора
  2. Б. Позитивное использование теории рационального выбора
  3. Б. Трактовка институтов с позиций теории рационального выбора
  4. БЛОК № 1 – Строительная теплофизика, теоретические основы создания микроклимата, отопление
  5. В современной учебной литературе по теории права: критический анализ
  6. ВИДЫ ТЕПЛООБМЕНА
  7. Власть в организации виды, основы, типы, формы.

 

Конвективным теплообменом, или теплоотдачей, называется процесс переноса тепла между поверхностью твердого тела и жидкой средой. При этом перенос тепла осуществляется одновременным действием теплопроводности и конвекции.

Явление теплопроводности в жидкостях и газах, так же как и в твердых телах, вполне определяется коэффициентом теплопровод­ности и температурным градиентом (см. разд. 2). Иначе обстоит дело с явлением конвекции — вторым элементарным видом распростра­нения тепла. Здесь процесс переноса тепла неразрывно связан с пе­реносом самой среды. Поэтому конвекция возможна лишь в жидко­стях и газах, частицы которых легко могут перемещаться.

По природе возникновения различают два вида движения — свободное и вынужденное. Свободным называется движение, происходящее вследствие разности плотностей нагретых и холодных частиц жидкости в поле тяжести. Возникновение и интенсивность свободного движения определяются тепловыми условиями процес­са и зависят от рода жидкости, разности температур, напряженности гравитационного поля и объема пространства, в котором проте­кает процесс. Свободное движение называется также естественной конвекцией. Вынужденным называется движение, возникающее под действием посторонних возбудителей, например насоса, вентилятора и пр. В общем случае наряду с вынужденным движением одно­временно может развиваться и свободное. Относительное влияние последнего тем больше, чем больше разность температур в отдель­ных точках жидкости и чем меньше скорость вынужденного дви­жения.

Интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи , который определяется по формуле Ньютона

 
 
(4.1)


Q = (tc - tж).

 

Согласно этому закону количество переданного тепла Q про­порционально поверхности теплообмена F и разности температур стенки и жидкости (tc—tж).

Коэффициент теплоотдачи можно определить как количество тепла, переданное в единицу времени через единицу поверхности при разности температур между поверхностью и жидкостью в один градус:

 

(4.2)

 

В общем случае коэффициент теплоотдачи может изменяться вдоль поверхности теплообмена, и различают поэтому средний по поверхности коэффициент теплоотдачи и локальный или местный коэффициент теплоотдачи, соответ­ствующий единичному элементу поверхности.

Процессы теплоотдачи нераз­рывно связаны с условиями движе­ния жидкости. Как известно из курса гидравлики, име­ются два основных режима тече­ния: ламинарный и турбулентный. При ламинарном режиме течение имеет спокойный, струйчатый ха­рактер. При турбулентном — дви­жение неупорядоченное, вихревое. Изменение режима дви­жения происходит при некоторой «критической» скорости, которая в каждом конкретном случае различна.

В результате специальных исследований О. Рейнольдс в 1883 г. установил, что в общем случае режим течения жидкости определя­ется не только одной скоростью, а особым безразмерным комплек­сом, состоящим из скорости движения жидкости w, коэффици­ента кинематической вязкости жидкости v и характерного размера l канала или обтекаемого тела. Теперь такой комплекс называется критерием или числом Рейнольдса и обозначается символом Re = wl/v.

Как известно из гидродинамики, критерий Рейнольдса, называемый иначе критерием кинематического подобия, характеризует соотношение между инерционными силами и силами трения и является основной характеристикой, определяющей режим течения жидкости. Переход ламинарного режима в турбулентный происходит при критическом значении этого критерия Reкр. Например, при дви­жении жидкости в трубах Reкр= w кp d/v =2·103.

При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые непрерывно возникают и исчеза­ют. В точности механизм вихреобразования еще не установлен. Одной из причин их возникновения является потеря устойчивости ламинарного течения, сопровождающаяся образованием завихре­ний, которые затем диффундируют в ядро и, развиваясь, заполня­ют весь поток. Одновременно с этим вследствие вязкости жидкости эти вихри постепенно затухают и исчезают. Благодаря непрерыв­ному образованию вихрей и их диффузии происходит сильное перемешивание жидкости, называемое турбулентным смешением. Чем больше вихрей, тем интенсивнее перемешивание жидкости и тем больше турбулентность потока. Различают естественную и ис­кусственную турбулентность. Первая устанавливается естественно. Для случая стабилизированного движения внутри гладкой трубы турбулентность вполне определяется значением критерия Re. Вторая вызывается искусственным путем вследствие наличия в потоке каких-либо преград, турбулизирующих решеток и других возмущающих источников. Однако при любом виде турбулентности в тонком слое у поверхности из-за наличия вязкого трения течение жидкости затормаживается и скорость падает до нуля. Этот слой принято называть пограничным или вязким подслоем.

Теория пограничного слоя была разработана Л. Прандтлем в начале прошлого столетия (1904 г.)

 

 

Рис. 4-1. Характер изме­нения температуры в по­граничном слое при на­гревании жидкости.

 

Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса тепла. При ламинар­ном режиме перенос тепла в направление нормали к стенке в основном осуществля­ется путем теплопроводности. При турбу­лентном режиме такой способ переноса тепла сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуще­ствляется путем интенсивного перемешивания частиц жидкости. В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказывается определяющим. В этом легко убедиться, если проследить за изменением температуры жидкости в направлении нормали к стенке (рис. 4.1). Как видно, наибольшее изменение температуры происходит в пределах тонкого слоя у поверхности, через который тепло передается путем теплопроводности. Следовательно, как для лами­нарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье:

(4.3)
q = -λ grad t,

 

где grad t — градиент температуры в слоях жидкости, прилегаю­щих к поверхности твердого тела, °С/м.

Процесс теплоотдачи является сложным процессом, а коэффи­циент теплоотдачи является сложной функцией различных величин, характеризующих этот процесс. В общем случае коэффициент теплоотдачи является функцией формы Ф, размеров l 1, l 2,..., температуры поверхности нагрева tс, скорости жидкости w, ее температуры tж, физических свойств жидкости — коэффициента теплопроводно­сти λ, теплоемкости ср, плотности ρ, вязкости μ и других факторов:

 
 
(4.4)


α= f (w, tc, tж, λ, ср, ρ, μ, а, Ф, l1 , l2...).

 

В качестве теплоносителей в настоящее время применяются са­мые разнообразные вещества — воздух, газы, вода, масла, бензол, нефть, бензин, спирты, расплавленные металлы и различные специ­альные смеси. В зависимости от рода и физических свойств этих ве­ществ теплоотдача протекает различно и своеобразно. Для каждо­го теплоносителя физические свойства имеют определенные значения и, как правило, являются функцией температуры, а некоторые из них и давления.

Коэффициент теплопроводности λ характеризует способность вещества проводить тепло; его значение определяет количество теп­ла, которое проходит в единицу времени через 1 м2 сечения при из­менении температуры в один градус на 1 м пути теплового потока (см. разд. 2).

Удельная теплоемкость с определяет количество тепла, необходимое для нагревания 1 кг вещества на один градус. При постоянном давлении теплоемкость обозначается cр (изобарная теплоемкость), а при постоянном объеме cv (изохорная теплоемкость).

Плотность вещества ρ = m/V представляет собой массу веще­ства в единице объема.

Коэффициент температуропроводности а=λ/сρ характеризует скорость изменения температуры в теле (см. разд. 2).

Вязкость. Все реальные жидкости обладают вязкостью; между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующая движению. Согласно закону вязкого трения Ньютона эта сила, от­несенная к единице поверхности, пропорциональна изменению ско­рости в направлении нормали к этой поверхности:

 

(4.5)
.

 

Величина μ называется коэффициентом вязкости или коэффициентом динамической вязкости.

При dw/dn =1 S = μ, следовательно, коэффициент вязкости вы­ражает собой силу трения, приходящуюся на единицу поверхности соприкосновения двух жидких слоев, «скользящих» друг по другу при условии, что на единицу длины нормали к поверхности ско­рость движения изменяется на единицу.

В уравнения гидродинамики и теплопередачи часто входит от­ношение коэффициента вязкости к плотности, называемое коэффи­циентом кинематической вязкости:

 
 
(4.6)


 

Температурный коэффициент объемного расширения харак­теризует относительное изменение объема при изменении темпе­ратуры на один градус:

 

(4.7)

 

где υ — удельный объем, м3/кг.

Для газов температурный коэффициент объемного расширения определяется по формуле

 
 
(4.8)


β=1/T.

Механизм и интенсивность переноса теплоты зависят от характера движения жидкости в пограничном слое. Если движение внутри теп­лового пограничного слоя ламинарное, то теплота в направлении, пер­пендикулярном к стенке, переносится теплопроводностью. Однако у внешней границы слоя, где температура по нормали к стенке меняется незначительно, преобладает перенос теплоты конвекцией вдоль стенки.

При турбулентном течении в тепловом пограничном слое пере­нос теплоты в направлении к стенке в основном обусловлен турбулентным перемешиванием жидкости. Интенсивность такого переноса теп­лоты существенно выше интенсивности переноса теплоты теплопровод­ностью. Однако непосредственно у стенки, в ламинарном подслое, пе­ренос теплоты к стенке осуществляется обычной теплопроводностью.

Изменение физических свойств жидкости в пограничном слое зави­сит от температуры, в связи с чем интенсивность теплообмена между жидкостью и стенкой оказывается различной в условиях нагревания и охлаждения жидкости. Так, например, для капельных жидкостей интенсивность теплообмена при нагревании будет большей, чем при охлаждении, вследствие уменьшения пограничного слоя. Следова­тельно, теплоотдача зависит от направления теплового потока.

Очень большое значение для теплообмена имеют форма и размер поверхностей; в зависимости от них может резко меняться характер движения жидкости и толщина пограничного слоя.


Дата добавления: 2015-08-03; просмотров: 133 | Нарушение авторских прав


Читайте в этой же книге: ВИДЫ ТЕПЛООБМЕНА | Градиент температур | Тепловой поток | Дифференциальное уравнение теплопроводности | Краевые условия | Теплопроводность через однослойную плоскую стенку | Теплопроводность через многослойную плоскую стенку | Основы теории подобия | Подобие процессов конвективного теплообмена | Вынужденном движении теплоносителя |
<== предыдущая страница | следующая страница ==>
Числовые данные к заданию 1| Дифференциальные уравнения теплоотдачи

mybiblioteka.su - 2015-2024 год. (0.011 сек.)