Читайте также: |
|
Среди методов получения мезопористых углеродных материалов – пиролиз гелей органических веществ с последующей карбонизацией, матричные методы (разд. 5.6), вспенивание пека, хлорирование карбидов металлов (разд. 3.4) и другие.
Для пиролиза обычно используют смесь резорцинола с формальдегидом и добавками катализатора, хотя описано применение и других предшественников.
Вспенивание пека сопровождается термической стабилизацией при 1000 оС, причём для регулирования размера пор в исходный пек иногда вводят углеродные нановолокна.
Пиролизом углеводородов на наночастицах MgO получен полый пористый углерод в виде частиц размером до 10 нм (рис. 135).
Путём сублимационной сушки водной дисперсии углеродных нанотрубок или сушки в сверхкритическом СО2 выделены твёрдые аэрогели нанотрубок. Описан процесс вспенивания концентрированной дисперсии многослойных углеродных нанотрубок с последующим замораживанием, удалением растворителя и пиролизом. Плотность продукта составляла 0.15–0.25 г/см3.
6.3. Простые вещества
Многие переходные металлы являются катализаторами. Наночастицы Fe служат эффективным средством для очистки загрязненных грунтовых вод от хлорсодержащих органических соединений (тетрахлорид углерода, хлорэтилен, хлорированные бифенилы и др.). Наночастицы Pt или Pd – электрокатализаторы в топливных элементах.
Согласно сводке, составленной В.Ф. Петруниным, в России производятся нанопорошки Al, Cu, Ni, Zn, Sn, Fe, W. Mo, Mg, Mn, Zr, Ta, Ag, Au, Pt, Pd, Ir, Co, Ti, Cd, Gd, а также сплавы WNiFe, FeAl, AlMg, NiMo, FeCu, FeNiCu, NiCo, NiCu, NiTiCu, CoCu, FeCo, FeW, CuSn, CuSnSm.
Магний применяют как аккумулятор водорода. Наночастицы Mg отличаются более коротким диффузионным путём, что повышает скорости сорбции и десорбции Н2. Композиты с углеродными нанотрубками усиливают эти преимущества. Наноструктурированные магниевые сплавы перспективны как саморассасывающиеся биоимплантанты.
Наночастицы Al или Al–В могут служить компонентом эффективного ракетного топлива. При горении Al-содержащей смеси образуются частицы Al2O3 размером около 30 нм.
Наночастицы Au и Ag применяются для усиления сигналов в спектроскопии комбинационного рассеяния и флуоресцентной спектроскопии. Особое внимание благодаря поверхностному плазмонному резонансу (разд. 4.5) привлекают наностержни Au. Коллоидное Au широко применяется в медицине как иммунохимический маркер. 6-39
Наночастицы Ag используются как эффективные антибактериальные средства. В промышленности частицы коллоидного Au используют при фотопечати, в производстве стекла и красителей для керамики. 6-40 Коллоидное Ag используют для спектрально-селективного поглощения солнечной энергии, в качестве катализаторов, для антимикробной стерилизации, в составе косметических средств. Оно обладает противовирусным и противогрибковым действием и используется для заживления ран, очистки воды и кондиционирования воздуха. Выпускаются текстильные изделия, содержащие наночастицы Au или Ag.
Наночастицы благородных металлов способствуют очистке воды (Pradeep*).
Наночастицы Fe применяют для рекуперации почв, загрязнённых хлорсодержащими органическими веществами, иммобилизованные наночастицы Fe – для удаления из растворов Cr(VI), Pb(II) или NO3-. Дисперсии наночастиц Fe и его сплавов применяют как добавки в моторное масло для «залечивания» изношенных деталей двигателей.
Наноструктурированные магнитные сплавы имеют повышенную коэрцитивную силу.
Наночастицы Zn повышают коррозионную стойкость промышленных лакокрасочных материалов и позволяют значительно уменьшить толщину покрытия.
Получены наноструктурированные Cr, Co, Cu, Zn, Zr, Ce, хастеллой и наночастицы этих металлов и сплава. Наноструктурирование Zr и его сплавов повышает их коррозионную стойкость.
Наночастицы Sn, полученные методом обратных мицелл, использованы для выращивания наностержней Si методом ПЖК.
Производство наночастиц Ti с углеродным покрытием для нужд энергетики к 2014 г. может составить 15 тыс. г. Наноструктурированные изделия из Ti (мощность – до 25 т/г.) с 2008 г. выпускает завод в г. Белгород.
Наночастицы Fe и его сплавов удаляют органические (хлорированные алканы и алкены, хлорированный бензол, пестициды, органические красители, нитроароматические соединения) и неорганические (нитраты) примеси из воды
Среди неметаллов преобладает наноструктурированный Si. 6-41
6.4. Оксидные наноматериалы
В промышленных масштабах производятся нанопорошки MgO, Al2O3, Y2O3, CeO2, SiO2, ZnO, TiO2, ZrO2, Fe2O3, в килограммовых количествах – ZrO2-Y2O3, ZrO2-MgO, ZrO2-Al2O3, MgAl2O4, YBa2Cu3O7 – x, гидроксиапатит.
Нанокристаллический MgO имеет необычную морфологию с большой долей координационно ненасыщенных поверхностных центров, благодаря чему обладает уникальной реакционной способностью и находит всё большее применение как носитель катализаторов и сорбент. Для его синтеза используют золь–гель-метод, гидротермальный процесс, пламенный распылительный пиролиз, лазерную абляцию, сжигание аэрозолей, химическое осаждение из газовой фазы, «мокрое сжигание» и осаждение из растворов.
Нанокристаллический СаО эффективно поглощает СО2.
Нанокристаллический корунд (α-Al2O3) используют при получении керамики для электронных и оптических устройств, носителей или активных компонентов катализаторов, а также высокопрочных изделий. Наночастицы Al2O3 входят в состав прозрачных антиабразивных покрытий, износостойких гальванических покрытий, шлифовальных и полировальных составов, смазок, противозагарных лосьонов и мазей, теплопроводных наножидкостей, функциализованные наночастицы служат наполнителями нанокомпозитов на основе полимеров. Созданы керамические нанокомпозиты, содержащие Al2O3 и металлы (Ni), апатит или углеродные нанотрубки. Разработан цемент для замены костей. Отмечено антимикробное действие наночастиц.
Из Al2O3 производят нановолокна, применяемые как наполнители композитов.
Пиролиз углеводородов на СаО, MgO и Al2O3 с последующим удалением оксидов позволяет получить полые наночастицы пористого углерода с высокой удельной поверхностью.
Мезопористые наночастицы SiO2 перспективны для адресной доставки лекарств и трансфекции генов. При легировании квантовыми точками их можно использовать в качестве флуоресцентных меток в биологии. Компонент зубных паст. Биоконъюгированные наночастицы SiO2 могут применяться для диагностики и лечения болезней, в молекулярной биологии, геномике и протеомике. Во избежание агрегирования, ведущего к потере части индивидуальных свойств, и лучшего распределения в матрице при введении в полимеры наночастицы SiO2 подвергают функциализации путём ковалентного привязывания органических групп. Одним из распространённых путей такой функциализации является гидролиз и конденсация моно-, три- и тетраэтоксисиланов или их хлорпроизводных в присутствии солей аммония в метаноле.
Производство нанодисперсного SiO2 высокотемпературным гидролизом было запатентовано немецкой фирмой Degussa ещё в 1941 г. и воплощено в 1950-е годы. Общемировой выпуск этого продукта составляет сотни тысяч тонн. Выпускается довольно много его марок (аэросил) с удельной поверхностью от 50 до 380 м2/г и средним размером частиц от 40–50 до 5–15 нм, а агрегатов – 200–300 нм. Подобный продукт (белая сажа) производится гидролизом кремнефтористоводородной кислоты и фторосиликатов.
Та же Degussa разработала высокотемпературный гидролиз AlCl3 и TiCl4 в кислородно-водородном пламени с получением наночастиц Al2O3 (средний размер 13 нм, удельная поверхность 100 м2/г) и TiO2 (21 нм, 50 м2/г).
Описано получение наночастиц Sb2O5 и Bi2O3. Наночастицы Ga2O3 обладают сильным антибактериальным действием, что позволяет использовать их в производстве специальных тканей.
Оксиды переходных металлов применяются как функциональные материалы различного назначения. Это полупроводники, ферриты, ферроэлектрики, сверхпроводники, ионные проводники, фотокатализаторы, люминофоры, лазерные кристаллы и пр. При этом ряд свойств проявляется или становится более выраженным при переходе к нанометровым размерам частиц. Оксид тантала – функциональный материал в высокоёмких танталовых конденсаторах. 6-42 Наночастицы некоторых оксидов имеют уникальное применение. Например, метастабильная модификация ε-WO3 является основой высокоселективного сенсора на ацетон и применяется для диагностики диабета по выдыхаемому воздуху.
Наночастицы SnO2 получают золь–гель-методом с использованием тетра(терт -бутокси)олова(IV). Применяют также контролируемый гидролиз SnCl4 с последующим термическим разложением H2SnO4. Наноструктурированный SnO2 с размером частиц 8 –10 нм выделяют из конденсата Sn и SnO, получаемого при возгонке Sn, с последующей пассивацией О2. Его используют в качестве чувствительного материала сенсоров газов и паров с восстановительными свойствами (Н2, СО, NO, C2H5OH, CH4).
По данным В.Ф. Петрунина, российские предприятия и организации производят нанометрические порошки CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Y2O3, UO2, PuO2, ZnO, ZrO2, CuO, Al2O3, V2O3, SiO2, Fe3O4, Fe2O3, TiO2, WO3, Bi2O3, MgO, Co3O4, Al2O3-MgO, CuO-Cu2O, Al2O3-V2O3, Al2O3-CuO, CuO-Bi2O3, (MgAl)2O4, NiFe2O4, FeWO4, Y3Fe5O12, LiMn2O4, Сe0.8Gd0.2O1.9.
Широкое распространение получил TiO2, который производят гидролизом различных растворимых соединений титана (TiCl4, TiOSO4) и последующим прокаливанием. Гидролиз проводят также в гидротермальных условиях и в газовой фазе. Довольно детально описан золь–гель-метод с использованием в качестве исходного соединения тетраизопропоксида титана. Для этих целей применяют также тетра- n -бутоксид титана. Золь–гель-метод позволяет регулировать соотношение различных модификаций диоксида (анатаз, брукит, рутил) и выделять каждую фазу в чистом виде. Нанотрубки TiO2 получают в гидротермальных условиях (разд. 3.3), мезопористые мембраны – электрохимическим методом (разд. 5.3.4).
Диоксид титана – эффективный фотокатализатор, перспективный для фотохимического производства водорода из воды. Фотокаталитические свойства TiO2 могут использоваться для удаления нежелательных органических примесей путём их окисления высокореакционноспособными кислородсодержащими частицами (включая О2- и ОН•). После обнаружения в 1985 г. способности платинированного порошка TiO2 убивать при УФ-облучении бактерии и создания мембран из TiO2 их также стали использовать для проведения фотохимических процессов с биологическими объектами. Показана, в частности, способность мембран уничтожать раковые клетки.
В виде нанопорошков он применяется в солнцезащитных косметических средствах, в составах для очистки и обеззараживания воздуха, в виде наностержней – как электроды гибридных суперконденсаторов. Диоксид всё шире применяется в строительстве в составе самоочищающихся стёкол, дорожных покрытий и стеновых материалов, в частности изготовленных из специального цемента. Диоксид считается перспективным фотокатализатором для очистки воды, причём он может служить как окислителем, так и восстановителем. Под действием УФ-облучения TiO2 эффективно удаляет из воды органические (хлорированные алканы, производные бензола, диоксины, фураны и др.) и неорганические (соединения Cr, Ag, Pt) соединения. 6-43 Легирование TiO2 азотом, углеродом или серой расширяет диапазон светочувствительности до ~550 нм и значительноувеличивает его фотокаталитическую активность.
Выпускаются ткани, покрытые наночастицами TiO2.
Нанотрубки TiO2 испытаны в качестве катализатора и носителя катализаторов, для фотокаталитического разложения органических веществ, в качестве ионообменника и адсорбента, электрода литий-ионных батарей, в химических сенсорах.
Диоксид церия – уникальное вещество, которое способно менять свой состав в зависимости от размера частиц (разд. 2.1.3). Наночастицы СеО2 получают осаждением из водных растворов с использованием медленно гидролизующихся реагентов (мочевина, гексаметилентетрамин) в присутствии стабилизаторов (лецитин, лимонная кислота и ее соли, альбумин куриного яйца, декстран), в обратных микроэмульсиях, гидротермальным методом. Диоксид церия входит в состав абразивов и полирующих смесей, разнообразных катализаторов, защитных и антикоррозионных покрытий, противоотражающих покрытий солнечных батарей, солнцезащитных кремов, электрохромных устройств, сенсоров и биосенсоров.
При комнатной температуре свойства ферромагнетиков проявляют наночастицы MgO, Al2O3, CeO2, TiO2.
Мировое производство наночастиц CeO2 приближается к 10 тыс. т. Наночастицы MnO2, V2O5 (наностержни, нанотрубки, наноленты) и МоО2 (наностержни) – материалы для перспективных суперконденсаторов.
Большой интерес к наночастицам ZnO (нанотрубки, наностержни, «лес» из наностержней, наноиглы, нанополоски, наноспирали, нанокольца, нанощетки и др.) связан с уникальными свойствами материала: большой шириной запрещенной зоны (3.40 эВ при комнатной температуре), что позволяет применять его в оптоэлектронных приборах как источник голубого света, а также большой энергией экситонов (60 мэВ), что делает возможным создание лазеров на процессе экситонной рекомбинации. Кроме того, ZnO имеет свойства пьезоэлектрика и пироэлектрика, является биологически безопасным, биосовместимым и биоразрушаемым в природе материалом. Области применения этого материала включают также сенсорику, спинтронику, медицину и биологию. Он служит биомаркером для диагностики болезней, наносенсором для внутриклеточного введения (Willander*), антибактериальным и фунгицидным реагентом. Испытано противоопухолевое действие ZnO. Оксид не токсичен для человека, что позволяет использовать его как компонент красок для текстиля (спецодежда, невидимая в ИК-свете), дезодоранта и косметики для защиты от УФ-излучения. На основе ZnO cоздано более 1200 солнцезащитных кремов. Наконец, он обладает каталитическими свойствами и используется, например, в производстве метанола. Семейство созданных из ZnO наноматериалов, возможно, превосходит по разнообразию материалы из других оксидов. В промышленных масштабах выпускается ZnO, покрытый полимерами или функциализованный активными группами. Считается, что ZnO среди наноматериалов занимает одно из ведущих мест наряду с углеродными нанотрубками и кремниевыми нанопроволоками.
Наноразмерный SiO2 применяют для изготовления теплоизоляционных материалов, термостойких красок, лаков и клеев, для производства материалов оптоэлектроники.
Многие оксиды (AgxO, CuO, In2O3, SnO2, ZnO, V2O5, MoO3, WO3, и др.) в виде наночастиц и пленок используются в химических сенсорах. Так, гидролизом SnCl4 в контролируемых условиях получены толстые и тонкие плёнки наноструктурированного SnO2 для химических сенсоров.
Наибольшие достигнутые значения удельной поверхности оксидов по данным Handbook of Porous Solids (см. в списке литературы) приведены в табл. 21.
Табл. 21.
Таблица 21. Достигнутые величины S БЭТ оксидов.
Оксид | Путь синтеза | S БЭТ, м2/г при t ≤ 200 оС | S БЭТ, м2/г при t ≥ 400 оС | Метод получения |
CuO ZnO CdO Sc2O3 Y2O3 La2O3 Ga2O3 In2O3 TiO2 ZrO2 HfO2 SnO2 PbOx GeOx V2O5 Nb2O5 Та2O5 Sb x O y Bi2O3 Cr2O3 МоО3 МоО2 WO x Mn x O y Fe2O3 Со3О4 NiO | Ж–Т Ж–Т К–К Ж–Т Ж–Т Т–Т Г–Т Ж–Т Т–Т Ж–Т Ж–Т Ж–Т Т–Т Г–Т Ж–Т Т–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Т–Т Г–Т Ж–Т Ж–Т Ж–Т Т–Т Г–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Г–Т Ж–Т Ж–Т Т–Т Ж–Т Ж–Т Ж–Т Ж–Т Ж–Т Г–Т Т–Т Ж–Т Ж–Т Т–Т Т–Т Ж–Т Т–Т Г–Т Ж–Т Т–Т Ж–Т Г–Т Ж–Т Ж–Т Ж–Т Т–Т Ж–Т Ж–Т Т–Т Г–Т Ж–Т Т–Т Ж–Т Т–Т | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - | сонохимич. осаждение осаждение из раствора окисление Cu гидролиз Zn(OR)2 осаждение из раствора термич. разложение плазменный пиролиз осаждение из раствора термич. разложение осаждение из раствора cупрамолек. сборка осаждение из раствора термич. разложение окисление паров Y осаждение из раствора термич. разложение матричный синтез с ПАВ матричный синтез с ПАВ гидролиз соли осаждение из раствора гидролиз Ti(OR)4 матричный синтез с ПАВ матричный синтез в пористом углероде матричный синтез с ПАВ окисление Ti гидролиз TiCl4 в пламени гидролиз Zr(OR)4 матричный синтез с ПАВ матричный синтез в сополимере термич. разложение гидролиз паров ZrCl4 гидролиз Hf(OR)4 матричный синтез с ПАВ гидролиз и гелирование раствора SnCl4 матричный синтез с ПАВ осаждение из раствора десублимация паров PbO гидролиз, полимеризация Ge-органич. производн. гидролиз алкоксида термич. разложение гидролиз этоксида матричный синтез с ПАВ матричный синтез с ПАВ осаждение из раствора окислительный гидролиз окисление паров Sb механич. измельчение золь-гель золь-гель термич. разложение восстановл. дихромата гидролиз этоксида термич. разложение окислит. пирогидролиз MoCl5 в пламени восстановит. гидролиз ацетилацетоната при 350оС термич. разложение матричный синтез с ПАВ гидролиз WCl6 в пламени восстановление KMnO4 гидролиз Mn-органич. производного матричный синтез с ПАВ термич. разложение осаждение из раствора матричный синтез с ПАВ термич. разложение окислит. плазм. пиролиз осаждение из раствора термич. разложение осаждение из раствора термич. разложение |
Нанокристаллический (средний размер частиц около 20 нм) гидроксиапатит был впервые получен в 1995 г. методом осаждения из водного раствора нитрата кальция и последующей распылительной сушкой. В последующие годы для синтеза были использованы такие методы, как золь-гель, механохимическое превращение СаО, мокрое сжигание и другие. Созданы нанобиокомпозиты для костного имплантирования.
В технике находят применение SbSnO и BaTiO3 с нанометровым размером частиц.
В России разработан и запатентован непрерывный метод получения наноразмерных оксидов, смесей оксидов и катализаторов с использованием процесса «мокрого сжигания» (разд. 5.3.1).
Некоторые оксиды используют в виде функциональных нанокомпозитов. К таким материалам относятся оксиды, нанесённые на поверхность углеродных нанотрубок (табл. 22).
Табл. 22.
Таблица 22. Применение углеродных нанотрубок, декорированных оксидами металлов (Zhang*).
Область применения | Оксид | Функция УНТ | Функция оксида |
суперконденсаторы | RuO2 MnO2 Fe2O3 NiO Co2O3 V2O5· x H2O | проводник, формирующий двойной электрический слой | псевдоёмкость |
литий-ионные батареи | SnO2 TiO2 MnO2 | проводник, интеркалирующий Li+ | проводник, интеркалирующий Li+ |
электрохимические сенсоры | MnO2 CuO Cu2O RuO x ZrO2 TiO2 MoO x WO3 RuO2 | проводник и подложка | электрокатализа- тор |
фотокатализаторы | TiO2 ZnO | подложка и сток электронов | фотокатализатор |
солнечные батареи | TiO2 | проводник и сток электронов | разделение зарядов |
газовые сенсоры | SnO2 ZnO | проводник и сорбент | катализатор |
Некоторые сложные оксиды с нанометровым размером частиц используют в качестве пигментов для керамики. Таковы голубой CoAl2O4, желтый (Ti,Cr,Sb)O2, черный CoFe2O4. Наночастицы быстрее растворяются в керамической матрице, но термически менее устойчивы микрочастиц.
6.5. Карбиды и нитриды
В промышленных масштабах производят SiC, WC, в килограммовых количествах – TiC. Описано получение нанокристаллических TiWC, CoC, FeC. Из нитридов производятся и применяются (большая часть в килограммовых количествах) нанопорошки BN, AlN, Si3N4, TiN, ZrN, Si3N4 - AlN, Si3N4 - TiN, Si3N4 - ZrN, AlN – TiN, AlN - ZrN, Si3N4 – Y2O3, Si3N4 – MgO, AlN - Y2O3, TiCxN1-x, ZrCxN1-x, TiCxN1-x.
Нанопорошки SiC производятся несколькими зарубежными фирмами. Для этого используются, в частности процессы термического разложения триметилсилана в плазме низкого давления.
Получены наностержни и нанотрубки из SiC, нанопористый SiC, покрытия и наноструктурированные компакты из SiC. Нанотрубки можно синтезировать матричным методом при взаимодействии углеродных нанотрубок с парами Si или SiO, нанопористый материал – по реакции сажи или фуллеренов с Si при температуре около 700 оС. Для нанесения покрытий применяют напыление (мишенями служат Si и С или SiC) и химическое осаждение из газовой фазы (по реакции SiH4 или тетраметилсилана c углеводородами).
Некоторые карбиды получают термическим разложением или пиролизом металлоорганических соединений. Так, SiC синтезируют пиролизом поликарбосиланов, В4С – разложением поливинилпентаборана [C2H3(B5H8)] n, TiC – разложением (η-C5H5)2Ti(C2H5)2 или пиролизом [(C6H4O2)2Ti] n в атмосфере Н2.
Разработан способ получения сравнительно длинных (около 1 см) нанотрубок BN, содержащих от одного до пяти слоев.
Особым видом углеродных соединений металлов являются карбоэдрены (меткары) – клетчатые структуры состава М8С12, где М = Zr, Hf, V, Cr, Mo, Fe со структурой додекаэдра. Они образуются при плазмохимическом синтезе, активируемом мощным лазерным излучением, при высокой концентрации углеводородов. Додекаэдры образованы из 12 пятиугольников, в вершинах которых находятся атомы.
Ферромагнетизм проявляют также наночастицы нитридов (GaN).
Отдельные нитриды синтезируют термическим разложением или пиролизом металлоорганических или элементорганических соединений. Примерами служит получение дисперсных порошков BN из полиборазина, полиборазола, поливинилборазина и других борсодержащих полимеров, получение AlN разложением [Al(NH2)3NH] n в токе NH3.
Термическим разложением поливинилсилазанов синтезируют соединения, содержащие C, N и В.
6.6. Халькогениды и пниктиды
Халькогениды состава АIIBVI обладают полупроводниковыми свойствами и широко применяются в электронике в виде плёнок и квантовых точек.
Наночастицы некоторых халькогенидов (CdS, CdSe) проявляют ферромагнетизм. 6-44 Особое место занимают халькогениды металлов слоистого строения, например MoS2, WS2 и др. (см. рис. 25). Они способны образовывать однослойные, двухслойные и тонкие многослойные кристаллы (выделены в 2009 г.), нанотрубки и фуллереноподобные молекулы.
Пниктиды AIIIBV также являются полупроводниками и находят широкое применение при создании электронных и оптоэлектронных приборов (полевые транзисторы, светодиоды, фотодетекторы, лазеры, волноводы и др.). Особое значение имеют двумерные частицы. Обычно наностержни (нанопроволоки) AIIIBV получают методом ПЖК (см. раздел 5.3.3), хотя в ряде случаев пригодны методы пар–кристалл–кристалл, пар–кристалл (десублимация), раствор–жидкость–раствор и др. Например, для синтеза нитевидного InAs и GaAs используют смесь паров AsH3 с парами триметилиндия или триметилгаллия при общем давлении 100 тор. с Au- катализатором при 430–560 оС.
6.7. Нанокомпозиты
Созданы нанокомпозиты с полимерными, керамическими, углеродными и металлическими матрицами. Наиболее многочисленны полимерные нанокомпозиты, наполнителями в которых служат природные и искусственные глины слоистого строения (монтмориллонит, бентонит, гекторит, вермикулит). В качестве наполнителей полимеров используются также наночастицы SiO2, Al2O3, CaCO3, НА, УНТ и УНВ, реже наночастицы металлов. 6-45
К карамическим нанокомпозитам относятся TiO2-Al2O3, Al2O3-ZrO2, Ca3(PO4)2-SiO2.
Наиболее распространенными нанокомпозитами с металлической матрицей являются WC-Co и магнитные сплавы. В России исследованы такие композиты, как Al2O3-Mo, Al2O3-Ni, ZrO2-Ni, TiB2-Cu.
Нанокомпозиты с металлическими матрицами и наполнителями из углеродных нанотрубок описаны для таким металлов, как Cu, Mg, Al, Sn, Ti, Fe, Co, Ni. Сюда можно добавить Si. Введение нанотрубок повышает твердость материала и уменьшает коэффициент термического расширения по сравнению с материалом матрицы. Нанотрубки обладают уникальным свойством: до 600 оС их коэффициент термического расширения в радиальном направлении отрицателен.
6.8. Стабилизированные дисперсии наночастиц
Дисперсии и стабилизированные дисперсии в воде или органических жидкостях (например, пульпа при бурении скважин) применяются в технике в течение нескольких десятилетий, однако стабилизированные дисперсии наночастиц как особые технические материалы сравнительно молоды: термин наножидкости появился в 1995 г.
Сравнение дисперсий, содержащих микрочастицы или наночастицы, (табл. 23) говорит о том, что наножидкости представляют собой совершенно иной по свойствам материал.
Табл. 23.
Таблица 23. Сравнение дисперсий, содержащих микро- и наночастицы.
Дата добавления: 2015-07-24; просмотров: 93 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Глава 6. Распространенные и перспективные наноматериалы 2 страница | | | Глава 6. Распространенные и перспективные наноматериалы 4 страница |