Читайте также:
|
|
ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ. АДСОРБЦИЯ
Все биологические объекты представляют собой гетерогенные системы, состоящие из нескольких фаз, которые отделены друг от друга поверхностями раздела. Кожные покровы, стенки кровеносных сосудов, слизистые оболочки, клеточные мембраны и другие системы живых организмов имеют высокоразвитые поверхности раздела. С особыми свойствами этих поверхностей связаны такие широко распространенные явления, как поверхностное натяжение, сорбция, адгезия, смачивание.
Свободная поверхностная энергия
В зависимости от агрегатного состояния контактирующих фаз различают подвижные и неподвижные границы их раздела. В системах газ-жидкость и жидкость-жидкость поверхность раздела подвижна, так как частицы на поверхности каждой фазы из-за теплового движения постоянно меняются. В системах твердое вещество-газ и твердое вещество-жидкость поверхность раздела неподвижна и определяется геометрией кристаллической решетки.
Частицы, находящиеся на поверхности раздела фаз, отличаются по своей энергии от частиц, находящихся в объеме фазы. Как показывает рис.9, молекулы, находящиеся в объеме жидкости, со всех сторон окружены такими же молекулами, поэтому равнодействующая сил межмолекулярного взаимодействия равна нулю. В то же время молекулы, находящиеся на поверхности жидкости, испытывают различное воздействие со стороны многочисленных молекул жидкости и малочисленных молекул пара, поэтому равнодействующая сил межмолекулярного взаимодействия не равна нулю и направлена внутрь жидкости. Для перемещения молекулы из внутреннего слоя жидкости в поверхностный слой необходимо затратить дополнительную энергию на преодоление сил сцепления ее с окружающими молекулами. Затраченная энергия переходит в избыточную энергию молекул поверхностного слоя.
Такое же различие проявляется у атомов, молекул или ионов, образующих кристаллические решетки твердого тела, в зависимости от того, находятся ли они в объеме фазы (где силовое поле частицы полностью компенсировано силовыми полями соседних частиц) или в ее поверхностном слое (где происходит лишь частичная компенсация силовых полей) (рис.10).
Пар
Рис.9. Действие молекулярных Рис.10. Неоднородность
сил внутри жидкости поверхности
и на ее поверхности. твердого тела.
Таким образом, потенциальная энергия частиц, находящихся на поверхности раздела фаз, выше, чем у аналогичных частиц, расположенных в объеме фазы. Термодинамическая функция, характеризующая энергию взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз, называется свободной поверхностной энергией Гиббса GS.
Свободная поверхностная энергия зависит от количества частиц на поверхности раздела, поэтому она прямо пропорциональна площади раздела фаз S:
GS = σS
Для подвижных поверхностей раздела фаз коэффициент пропорциональности σ называется поверхностным натяжением. По своему физическому смыслу поверхностное натяжение равно работе, которую нужно затратить на образование единицы поверхности раздела. Измеряется σ в Дж/м2 или в Н/м.
Величина поверхностного натяжения зависит от природы контактирующих фаз; так, для полярных жидкостей вследствие более сильного межмолекулярного взаимодействия поверхностное натяжение существенно выше, чем для неполярных жидкостей.
С ростом температуры поверхностное натяжение уменьшается, поскольку снижается различие в энергии частиц контактирующих фаз. При критической температуре, когда полностью исчезает различие между паром и жидкостью, σ = 0.
Увеличение давления в газовой фазе, способствуя возрастанию концентрации молекул в ней, снижает различие в энергиях взаимодействия частиц жидкости и пара и уменьшает поверхностное натяжение.
Экспериментально величина поверхностного натяжения жидкостей определяется различными методами: методом отрыва кольца, по поднятию жидкости в капилляре, по наибольшему давлению пузырьков газа и др. Наиболее часто применяется сталагмометрический метод. В этом методе измеряют число капель, в виде которых определенный объем жидкости истекает из тонкого капилляра. Это число обратно пропорционально поверхностному натяжению жидкости. Обычно сравнивают число капель n (Н2О) чистого растворителя (воды) и исследуемого разбавленного водного раствора nx:
n (H2O)
sх = s (Н2О)· ¾¾¾
nx
Поверхностное натяжение воды при температуре 20°С составляет 72,75 мН/м.
Согласно второму началу термодинамики все самопроизвольные процессы протекают в направлении, приводящем к уменьшению энергии Гиббса. Поскольку GS зависит от двух параметров - σ и S, то все поверхностные явления происходят самопроизвольно либо при снижении σ (различные виды сорбции), либо при снижении S (слияние капель жидкости или пузырьков газа - коалесценция и слипание частиц в дисперсных системах - коагуляция).
Дата добавления: 2015-07-24; просмотров: 563 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Цель работы. | | | Поверхностная активность |