Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Субъективный Байесовский метод

Читайте также:
  1. A. Методы измерения мертвого времени
  2. HR– менеджмент: технологии, функции и методы работы
  3. I метод.
  4. I. 2. 1. Марксистско-ленинская философия - методологическая основа научной психологии
  5. I. 2.4. Принципы и методы исследования современной психологии
  6. I. Анализ методической структуры и содержания урока
  7. I. Методические указания к изучению курса

Введем определения.

 

Условная вероятность события d при данном s – это вероятность того, что событие d наступит при условии, что наступило событие s.

Напрмер, вероятность того, что пациент действительно страдает заболеванием d, если у него обнаружен только симптом s.

В традиционной теории вероятностей для вычисления условной вероятности события d при данном s используется следующая формула:

(1)

Из формулы видно, что вероятность определяется в терминах совместимости событий. Она представляет собой отношение вероятности совпадения событий d и s к вероятности появления события s. Из предыдущей формулы следует, что

(2)

Если разделить обе части на P(s) и подставить в правую часть (1), то получим правило Байеса в простейшем виде:

(3)

Это правило, которое еще называют инверсной формулой для условной вероятности, позволяет определить вероятность P(d|s) появления события d, при условии, что произошло событие s через известную условную вероятность P(s|d). В полученном выражении P(d) – априорная вероятность наступления события d, а P(d|s)- апостериорная вероятность, то есть вероятность того, что событие s свершилось.

 

В системах, основанных на знаниях, чаще всего используется формула (3). Например, существует некий пациент с симптомом заболевания – “боль в груди” и желательно знать какова вероятность того, что этот симптом является следствием определенного заболевания (например, инфаркта миокарда). Для того чтобы вычислить вероятность

 

P(инфаркт миокарда | боль в груди)

 

по формуле (1) необходимо знать (или оценить каким-либо способом) сколько человек в мире страдают этим заболеванием и сколько из них жалуются на боль в груди. Как правило получить такого рода информацию сложно, поэтому формула (3) больше пригодна для практического применения.

 

Например, врач на основании собственного опыта может оценить, у какой части пациентов, страдающих этим заболеванием, встречается данный симптом. Следовательно, он может оценить значение вероятности

P(боль в груди | инфаркт миокарда).

 

Субъективный взгляд на природу вероятности тесно связан с правилом Байеса по следующей причине. Предположим, мы располагаем достаточно достоверной оценкой вероятности P(s| d), где s- означает симптом, а d- заболевание. Тогда по формуле (3) можно вычислить вероятность P(d|s). Оценку вероятности P(d) можно взять из публикуемой медицинской статистики, а оценить значение P(s) врач может на основании собственных наблюдений.

Надо отметить, что вычисление P(d|s) не вызывает затруднений, когда речь идет о единственном симптоме, учитывающемся при диагностике одного заболевания. Если же задача ставится как диагностика m различных заболеваний по n – различным симптомам, то задача усложняется вычислением (mn)k+m+nk оценок вероятностей.

 


Дата добавления: 2015-07-20; просмотров: 88 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Метод MYCIN| Теория доказательства Демпстера-Шафера

mybiblioteka.su - 2015-2024 год. (0.006 сек.)