Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

В основе малого круговорота веществ лежат процессы синтеза и разрушения органическихсоединений. Эти двапроцесса обеспечивают жизнь и составляют одну из глав­ных ее особенностей.

Читайте также:
  1. I. Мозговое вещество
  2. III. Нарушения обмена веществ
  3. IV. Как меняется осенью жизнь растений
  4. NB! Гликолиз и глюконеогенез – взаимосвязанные процессы
  5. NB! Глюконеогенез – механизм синтеза глюкозы
  6. V. Речь и речевые процессы
  7. VI. Гуманизм как гуманное самовосприятие: исполнившаяся жизнь

В отличие от геологического, биологический круговорот харак­теризуется ничтожным количеством энергии. На создание органического вещества, как уже упоминалось, затрачивается всего около 1 % падающей на Землю лучистой энергии. Однако эта энергия, вовлеченная в биологический круговорот, соверша­ет огромную работу по созиданию живоговещества. Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из протоплазмы одних организмов в усво­яемую для других организмов форму.

Все абиотические и биотические планетарные циркуля­ции веществ тесно переплетены и образуют общий глобаль­ный круговорот, перераспределяющий энергию Солнца.


Глава 4. Круговорот веществ

Иными словами, все химические элементы участвуют и в большом, и в малом круговороте веществ, перемещаясь из неживой среды в живые организмы и обратно, образуя биогеохимические циклы.

Биогеохимические циклы - это более или менее замкнутые пути движения химических элементов в живых организмах («био»), в твердых породах, воздухе и воде («гео»). В круговороте элементов различают две части: резервный фонд - большая небиологическая часть медленно движущихся веществ и обменный фонд - меньшая, но более подвижная часть, которая быстро обменивается между организмами и окружающей их средой. Резервный фонд называют «недоступным», а обменный - «доступным» (рис. 4.3).

Рис. 4.3. Биогеохимические циклы на фоне упрощенной схемы потока энергии: Пв, Пч, Пвт - валовая, чистая и вторичная продукция; -> - энергия; -> - вещества

Из более чем ста химических элементов, встречающихся в природе, 30 - 40 являются биогенными, т. е. необходимы орга­низмам. Некоторые из них (углерод, водород, кислород, азот, фосфор) нужны организмам в больших количествах - макро­элементы, другие - в малых или даже ничтожных - микроэлементы.


Глава 4. Круговорот веществ

Следует иметь в виду, что циклы с малым объемом резервно­го фонда более подвержены воздействию человека. Биогеохими­ческие циклы делятся на два типа: газообразные циклы с резервным фондом химического элемента в атмосфере и гидро­сфере и осадочные циклы с резервным фондом в земной коре. Главными биогеохимическими циклами, обеспечивающими жизнь на планете (кроме круговорота воды), являются циркуля­ции углерода, кислорода, азота, фосфора, серы и других био­генных макроэлементов. Рассмотрим некоторые из них.

4.2. Циклы газооб- Биогеохимические циклы углерода и разных веществ азота - примеры наиболее важных газо­образных циклов биогенных веществ. Углерод поступает в биологический круговорот в виде СО2, кото­рый усваивается растениями, а азот - в виде газообразного азота N2, который используется азотфиксирующими организма­ми. Доступные запасы этих газов содержатся в атмосфере.

Круговорот углерода. Углерод - основной строительный материал молекул важных для жизни органических соединений (углеводов, жиров, белков, нуклеиновых кислот - ДНК, РНК и др.). Растения получают его, поглощая СО2 из атмосферы. Сейчас запасы углерода в атмосфере в виде СО2 относительно невелики в сравнении с его запасами в океанах и земной коре (в виде ископаемого топлива). Но твердые формы углерода продуценты усваивать не могут.

В другие геологические эпохи содержание СО2 в атмосфере было в 6 - 10 раз выше.

Вспомним, как образовалась современная земная атмосфера с низким содержани­ем углекислого газа и высоким содержанием кислорода. Более 3 млрд лет назад до появления жизни атмосфера Земли, подобно современной атмосфере Юпитера и других планет, состояла из вулканических газов. В ней было много СО2 и мало (или совсем не было) кислорода. Первые организмы были анаэробными, т. е. жили в отсут­ствие кислорода. В результате того, что скорость образования органических веществ в среднем превышала скорости их разложения, в атмосфере стал появляться О2.

Накопление кислорода началось с докембрия, и к началу палеозоя его содержание в атмосфере не превышало 10 % от современного. В дальнейшем оно неуклонно росло. Предполагают, что в истории Земли были периоды, когда концентрация кислорода превышала современную. Сейчас наличный запас свободного кислорода оценивается приблизительно в 1,6 1015 т. Современные зеленые растения могут воссоздать такое


Глава 4. Круговорот веществ

количество за 10 000 лет. Накоплению кислорода, по-видимому, способствовали также геологические и физико-химические процессы.

Биотическая циркуляция углерода в биосфере основана на потреблении С02 из атмосферы и его поступлении в атмосферу.

Потребление углекислого газа из воздуха происходит главным образом:

1) в процессе фотосинтеза С02 + Н20 —> СН20 + 02;

2) в реакциях его с карбонатами в океане С02 + Н20 + СаСО3 -> Са(НС03)2;

3) при выветривании горных пород Fe2S3 + 6С02 + 6Н20 —> 2Fe(HC03)3 + 3H2S.

Поступление углекислого газа в атмосферу в современ­ных условиях происходит в результате:

1) дыхания всех организмов;

2) минерализации органических веществ;

3) выделения по трещинам земной коры из осадочных пород (имеют также биогенное происхождение);

4) выделения из мантии Земли при вулканических извержени­ях (незначительная часть - до 0,01 %);

5) сжигания древесины и топлива (рис. 4.4).

Низкое содержание СO2 и высокие концентрации O2 в атмосфе­ре сейчас служат лимитирующими факторами для фотосинтеза, а зеленые растения и карбонаты океана являются регуляторами этих газов, поддерживающими относительно стабильное их соот­ношение (0,03 % и 21 %).

Таким образом, «зеленый пояс» Земли и карбонатная система океана являются буферной системой, которая под­держивает относительно постоянное содержание СO2 в ат­мосфере.

Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.

Влияние человека на круговорот углерода проявилось в том, что с развитием индустрии и сельского хозяйства поступле-


 


Глава 4. Круговорот веществ


Гпава 4. Круговорот веществ

ние С02 в атмосферу стало расти за счет антропогенных источ­ников.

Основная масса углерода находится в земной коре в связан­ном состоянии. Важнейшие минералы - карбонаты, количество углерода в них оценивается в 9,6-1015 т. Разведанные запасы горючих ископаемых (угли, нефть, битумы, торф, сланцы, газы) содержат еще около 1013 т углерода. Человек тем или иным путем извлекает эти запасы из недр и постепенно увеличивает поток С02 в атмосферу: в 1800 г. концентрация С02 составля­ла 0,029 %, в 1958 г. - 0,0315 %, в 1980 г. - 0,0335 %, а в 1995 г. - 0,0352 %.


Дата добавления: 2015-07-20; просмотров: 295 | Нарушение авторских прав


Читайте в этой же книге: Разложение органических веществ есть процесс, в ре­зультате которого организмы получают необходимые хи­мические элементы и энергию при преобразовании пищи внутри клеток их тела. | Именно преобладание скорости синтеза над скоростью разложения органических веществ и явилось причиной уменьшения содержания углекислого газа и накопления кислорода в атмосфере. | Весие главным образом за счет отрицательных обратных связей. | Биом - это макросистема, совокупность экосистем, тес­но связанных климатическими условиями, потоками энер­гии, круговоротом веществ, миграцией организмов и типом растительности. | Второй закон термодинамики утверждает: при любых превращениях энергия переходит в форму, наименее при­годную для использования и наиболее легко рассеиваю­щуюся. | Дыхание упорядоченной биомассы выполняет функ­ции «диссипативных структур» экосистем. | Эксергия- это максимальная работа, которую соверша­ет термодинамическая система при переходе из данно­го состояния в состояние физического равновесия с окру­жающей средой. | Организмы, получающие энергию Солнца через одина­ковое число ступеней, принадлежат к одному трофичес­кому уровню. | Описание потоков энергии является фундаментом эколо­гического анализа для прогнозирования выхода полезных для человека продуктов. | Показателем энергоэффективности является отношение количества полезной энергии на выходе системы ко всей полезной энергии на входе. |
<== предыдущая страница | следующая страница ==>
Деньги- это мера стоимости товаров, созданных трудом.| Следовательно, деятельность человека увеличивает при­ток углерода в атмосферу в виде С02.

mybiblioteka.su - 2015-2025 год. (0.007 сек.)