Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Моделирование

Читайте также:
  1. Действия с объектами. Моделирование компьютерного стола и стульев
  2. Задание 3. Моделирование стен с помощью сплайнов
  3. Компьютерное моделирование форм понимания и применение «понимающих систем» в научных исследованиях
  4. Моделирование
  5. Моделирование
  6. Моделирование в среде Mathcad

Моделирование(фр. modèle, от лат. modulus — «мера, аналог, образец») — это упрощенное представление реального устройства и/или протекающих в нем процессов, явлений, практическое или теоретическое оперирование объектом, при котором изучаемый предмет замещается каким-либо естественным или искусственным аналогом, через исследование которого мы проникаем в предмет познания. Например, исследуя свойства модели самолета, мы тем самым познаем свойства самого самолета.

Моделирование как познавательный прием неотделимо от развития знания. По существу, моделирование как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Однако в отчетливой форме (хотя без употребления самого термина) моделирование начинает широко использоваться в эпоху Возрождения; Брунеллески, Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений; в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода моделирования. И. Ньютон пользуется этим методом уже вполне осознанно, а в 19—20 вв. трудно назвать область науки или ее приложений, где моделирование не имело бы существенного значения; исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла, Ф. А. Кекуле, А. М. Бутлерова и других физиков и химиков — именно эти науки стали, можно сказать, классическими «полигонами» методов моделирования. Появление же первых электронных вычислительных машин (Дж. Нейман, 1947) и формулирование основных принципов кибернетики (Н. Винер, 1948) привели к поистине универсальной значимости новых методов — как в абстрактных областях знания, так и в их приложениях. Моделирование ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе.

Единая классификация видов моделирования затруднительна в силу многозначности понятия «модель» в науке и технике. Ее можно проводить по различным основаниям: по характеру моделей (т. е. по средствам моделирования); по характеру моделируемых объектов; по сферам приложения моделирования (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.) и его уровням («глубине»), начиная, например, с выделения в физике моделирования на микроуровне (моделирование на уровнях исследования, касающихся элементарных частиц, атомов, молекул). В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на «строгие» правила, сколько на языковые, научные и практические традиции, а еще чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет (типичный пример — термин «кибернетическое» моделирование).

Модель представляет собой средство и способ выражения черт и соотношений объекта, принятого за оригинал. Модель — это имитация одного или ряда свойств объекта с помощью некоторых иных предметов и явлений. Моделью может быть всякий объект, воспроизводящий требуемые особенности оригинала. Если модель и оригинал — одинаковой физической природы, то мы имеем дело с физическим (предметным) моделированием. Физическое моделирование применяется как прием экспериментального исследования на моделях свойств строительных конструкций, зданий, самолетов, судов, как способ выявления недостатков в работе соответствующих систем и нахождения путей их устранения.

Явление (система, процесс) может исследоваться и путем опытного изучения каких-либо явления иной физической природы, но такого, что оно описывается теми же математическими соотношениями, что и моделируемое явление. Например, механические и электрические колебания описываются одними и теми же дифференциальными уравнениями; поэтому с помощью механических колебаний можно моделировать электрические и наоборот. Такое «предметно-математическое» моделирование широко применяется для замены изучения одних явлений изучением других явлений, более удобных для лабораторного исследования, в частности потому, что они допускают измерение неизвестных величин. Так, электрическое моделирование позволяет изучать на электрических моделях механические, гидродинамические, акустические и другие явления. Электрическое моделирование лежит в основе т. н. аналоговых вычислительных машин.

При знаковом моделировании моделями служат знаковые образования какого-либо вида: схемы, графики, чертежи, формулы, графы, слова и предложения в некотором алфавите (естественного или искусственного языка).

Важнейшим видом знакового моделирования является математическое (логико-математическое) моделирование, осуществляемое средствами языка математики и логики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математических, логических, химических формул, преобразования состояний элементов цифровой машины, соответствующих знакам машинного языка, и др.). Современная форма «материальной реализации» знакового (прежде всего, математического) моделирования — это моделирование на цифровых электронных вычислительных машинах, универсальных и специализированных. Такие машины — это своего рода «чистые бланки», на которых в принципе можно зафиксировать описание любого процесса (явления) в виде его программы, т. е. закодированной на машинном языке системы правил, следуя которым машина может «воспроизвести» ход моделируемого процесса.

Действия со знаками всегда в той или иной мере связаны с пониманием знаковых образований и их преобразований: формулы, математические уравнения и т. п. выражения применяемого при построении модели научного языка определенным образом интерпретируются (истолковываются) в понятиях той предметной области, к которой относится оригинал. Поэтому реальное построение знаковых моделей или их фрагментов может заменяться мысленно-наглядным представлением знаков и (или) операций над ними. Эту разновидность знакового моделирования иногда называется мысленным моделированием. Впрочем, этот термин часто применяют для обозначения «интуитивного» моделирования, не использующего никаких четко фиксированных знаковых систем, а протекающего на уровне «модельных представлений». Такое моделирование есть непременное условие любого познавательного процесса на его начальной стадии.

Моделирование играет огромную эвристическую роль, являясь предпосылкой новой теории. Моделирование получает широкое применение потому, что оно дает возможность осуществлять исследование процессов, характерных для оригинала, в отсутствие самого оригинала. Это часто бывает необходимо из-за неудобства исследования самого объекта и по многим другим соображениям: дороговизны, недоступности, необозримости его и т.п.

Моделированиенеобходимо предполагает использование абстрагирования и идеализации. Отображая существенные (с точки зрения цели исследования) свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции, т. е. как некоторый абстрактный идеализированный объект. При этом от характера и уровней лежащих в основе моделирования абстракций и идеализаций в большой степени зависит весь процесс переноса знаний с модели на оригинал; в частности, существенное значение имеет выделение трех уровней абстракции, на которых может осуществляться моделирование: уровня потенциальной осуществимости (когда упомянутый перенос предполагает отвлечение от ограниченности познавательно-практической деятельности человека в пространстве и времени), уровня «реальной» осуществимости (когда этот перенос рассматривается как реально осуществимый процесс, хотя, быть может, лишь в некоторый будущий период человеческой практики) и уровня практической целесообразности (когда этот перенос не только осуществим, но и желателен для достижения некоторых конкретных познавательных или практических задач).

На всех этих уровнях, однако, приходится считаться с тем, что моделирование данного оригинала может ни на каком своем этапе не дать полного знания о нем. Эта черта моделирования особенно существенна в том случае, когда предметом моделирования являются сложные системы, поведение которых зависит от значительного числа взаимосвязанных факторов различной природы. В ходе познания такие системы отображаются в различных моделях, более или менее оправданных; при этом одни из моделей могут быть родственными друг другу, другие же могут оказаться глубоко различными. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки точно определяемых критериев сравнения. Если такие критерии основываются на экспериментальных данных, то возникает дополнительная трудность, связанная с тем, что хорошее совпадение заключений, которые следуют из модели, с данными наблюдения и эксперимента еще не служит однозначным подтверждением верности модели, т. к. возможно построение других моделей данного явления, которые также будут подтверждаться эмпирическими фактами. Отсюда — естественность ситуации, когда создаются взаимодополняющие или даже противоречащие друг другу модели явления; противоречия могут «сниматься» в ходе развития науки (и затем появляться при моделировании на более глубоком уровне). Например, на определенном этапе развития теоретической физики при моделировании физических процессов на «классическом» уровне использовались модели, подразумевающие несовместимость корпускулярных и волновых представлений; эта «несовместимость» была «снята» созданием квантовой механики, в основе которой лежит тезис о корпускулярно-волновом дуализме, заложенном в самой природе материи.

Ключевыми вопросами моделирования, влияющими на качество решений, вырабатываемых с помощью моделей, являются:

· адекватность модели реальному объекту

· область применения модели

Процесс моделирования включает три элемента:

§ субъект (исследователь),

§ объект исследования,

§ модель, определяющую (отражающую) отношения познающего субъекта и познаваемого объекта.

Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от исследования других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о её «поведении». Конечным результатом этого этапа является множество (совокупность) знаний о модели.

На третьем этапе осуществляется перенос знаний с модели на оригинал — формирование множества знаний. Одновременно происходит переход с «языка» модели на «язык» оригинала. Процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели.

Четвёртый этап — практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Моделирование — циклический процесс. Это означает, что за первым четырёхэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта или ошибками в построении модели, можно исправить в последующих циклах.

Сейчас трудно указать область человеческой деятельности, где не применялось бы моделирование. Разработаны, например, модели производства автомобилей, выращивания пшеницы, функционирования отдельных органов человека, жизнедеятельности Азовского моря, последствий атомной войны. В перспективе для каждой системы могут быть созданы свои модели, перед реализацией каждого технического или организационного проекта должно проводиться моделирование.

Одним из наиболее важных аспектов построения систем моделирования является проблема цели. Любую модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании — это проблема целевого назначения. Подобие процесса, протекающего в модели, реальному процессу является не целью, а условием правильного функционирования модели, и поэтому в качестве цели должна быть поставлена задача изучения какой-либо стороны функционирования объекта.

 


Дата добавления: 2015-07-26; просмотров: 153 | Нарушение авторских прав


Читайте в этой же книге: МЕТОДЫ РЕШЕНИЯ НЕФОРМАЛИЗОВАННЫХ ЗАДАЧ | ПРОБЛЕМЫ, ЗАДАЧИ, АЛГОРИТМ РЕШЕНИЯ | ЭКСПЕРИМЕНТ КАК ОСНОВНОЙ МЕТОД ПОЗНАНИЯ | МЫСЛЕННЫЙ ЭКСПЕРИМЕНТ | ДЕДУКЦИЯ И ДЕДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ | ИНДУКЦИЯ И ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ | ИНТУИЦИЯ | ВИДЫ ИНТУИЦИИ | ПОДХОДЫ К ПОНИМАНИЮ МЕХАНИЗМА ИНТУИЦИИ | МЕТОД ПРОБ И ОШИБОК |
<== предыдущая страница | следующая страница ==>
АНАЛОГИЯ| ФОРМАЛИЗАЦИЯ

mybiblioteka.su - 2015-2024 год. (0.008 сек.)