Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Позитронно-эмиссионная томография

Читайте также:
  1. Компьютерная томография и магнитно- резонансная томография
  2. Компьютерная томография с двумя источниками излучения
  3. Спиральная компьютерная томография
  4. Томография височно-нижнечелюстных суставов

Изображение, построенное по методу проекций максимальной интенсивности — Maximum intensity projection (MIP) исследования ПЭТ

Позитро́нно-эмиссио́нная томогра́фия (позитронная эмиссионная томография, сокращ. ПЭТ), она же двухфотонная эмиссионная томография — радионуклидный томографический метод исследования внутренних органов человека или животного. Метод основан на регистрации пары гамма-квантов, возникающих при аннигиляции позитронов. Позитроны возникают при позитронном бета-распаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием.

Позитронно-эмиссионная томография — это развивающийся диагностический и исследовательский метод ядерной медицины. В основе этого метода лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами. Потенциал ПЭТ в значительной степени определяется арсеналом доступных меченых соединений — радиофармпрепаратов (РФП). Именно выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

На сегодняшний день в ПЭТ в основном применяются позитрон-излучающие изотопы элементов второго периода периодической системы:

· углерод-11 (T ½= 20,4 мин.)

· азот-13 (T ½=9,96 мин.)

· кислород-15 (T ½=2,03 мин.)

· фтор-18 (T ½=109,8 мин.)

Фтор-18 обладает оптимальными характеристиками для использования в ПЭТ: наибольшим периодом полураспада и наименьшей энергией излучения. С одной стороны, относительно небольшой период полураспада фтора-18 позволяет получать ПЭТ-изображения высокой контрастности при низкой дозовой нагрузке на пациентов. Низкая энергия позитронного излучения обеспечивает высокое пространственное разрешение ПЭТ-изображений. С другой стороны, период полураспада фтора-18 достаточно велик, чтобы обеспечить возможность транспортировки РФП на основе фтора-18 из централизованного места производства в клиники и институты, имеющие ПЭТ-сканеры (т. н. концепция сателлитов), а также расширить временны́е границы ПЭТ-исследований и синтеза РФП.

Компания Siemens AG в своих ПЭТ/КТ устройствах применяет сцинтилляционные детекторы на основе монокристаллов оксиортосиликата лютеция (Lu2SiO5, LSO).

Изобретатели:Майкл Тер-Погосян совместно с Дж. Эуджен-Робинсон, К. Шарп Кук[1].


Дата добавления: 2015-07-26; просмотров: 85 | Нарушение авторских прав


Читайте в этой же книге: Медицинские системы компьютерной томографии | История томографии | Томографические алгоритмы | РЕНТГЕНОГРАФИЯ | Предпосылки метода в истории медицины | Спиральная компьютерная томография | Преимущества МСКТ перед обычной спиральной КТ | Компьютерная томография с двумя источниками излучения |
<== предыдущая страница | следующая страница ==>
Контрастное усиление| Примечания

mybiblioteka.su - 2015-2024 год. (0.005 сек.)