Читайте также:
|
|
· Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.
· Силовые линии электрического поля всегда перпендикулярны поверхности проводника.
· Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).
Напряжённость — физическая величина, характеризующая поле:
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:
.
Также иногда называется силовой характеристикой электрического поля.
Математически зависимость вектора от координат пространства само задаёт векторное поле.
Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).
вакууме (или в отсутствии среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
В вакууме Н. э. п. удовлетворяет принципу суперпозиции, согласно которому полная напряжённость поля в точке равна геометрической сумме напряжённостей полей, создаваемых отдельными заряженными частицами.
Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В СИ: , где μ0 - магнитная постоянная
Напряжение. Отношение работы, совершаемой любым электрическим полем при перемещении положительного заряда из одной точки поля в другую, к значению заряда называется напряжением между этими точками:
.
Отсюда работа сил электрического поля при перемещении заряда равна произведению напряжения U между точками на заряд q:
A = qU. (40.8)
В электростатическом поле напряжение между двумя любыми точками равно разности потенциалов этих точек:
. (40.9)
Как будет показано далее, равенство (40.9) может не выполняться, если электрическое поле непотенциальное. В непотенциальных электрических полях работа сил поля при перемещении электрического заряда зависит от траектории движения заряда из одной точки в другую.
14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:
.
Также иногда называется силовой характеристикой электрического поля.
Математически зависимость вектора от координат пространства само задаёт векторное поле.
Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).
вакууме (или в отсутствии среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой - потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: d A = q E d l, эта же работа равна убыли потенциальной энергии заряда q: d A = - d W п = - q d ,где d - изменение потенциала электрического поля на длине перемещения d l. Приравнивая правые части выражений, получаем: E d l = -d или в декартовой системе координат
Ex d x + Ey d y + Ez d z = -d , (1.8)
где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем
откуда
.
Стоящее в скобках выражение является градиентом потенциала j, т. е.
E = - grad = -Ñ .
Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.
Напряженность поля связана с разностью потенциалов формулой E=U/∆d,
Где U-разность потенциалов между двумя точками на одной силовой линии, находящимися на малом расстоянии ∆d друг от друга.
Напряженность поля Ē направлена в сторону убывания потенциала.
Единица измерения напряженности 1В/м.
Все точки поверхности, перпендикулярной силовым линиям, имеют один и тот же6 потенциал. Поверхности равного потенциала называют эквипотенциальными. Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону уменьшения потенциала.
Для измерения разности потенциалов используют прибор электрометр.
?15.Энергия взаимодействия зарядов и энергия заряда во внешнем электрическом поле. Движение заряда во внешнем электрическом поле.
Дата добавления: 2015-07-18; просмотров: 229 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Второе начало термодинамики и его статистическая природа. | | | Энергия взаимодействия электрических зарядов |