Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Физическая сущность колебаний синхронных машин

Читайте также:
  1. B. Сущность зла
  2. I I I Основы теории механизмов и машин (ТММ)
  3. I. СУЩНОСТЬ И ТЕМПЫ ЭКОНОМИЧЕСКОГО РОСТА
  4. I. Сущность социальной политики
  5. II. МАШИНА
  6. V2: Сущность социальной политики социального государства.
  7. Алматы ауыр машина жасау зауыты

При колебаниях или качаниях синхронной машины ее ротор вращается неравномерно и скорость его колеблется с некоторой частотой около среднего значения.

Наибольший практический интерес представляет случай, когда машина работает параллельно с мощной сетью, частоту /х тока которой можно считать постоянной. В этом случае колебания угловой скорости ротора Q, происходят около синхронной угловой скорости

Одновременно с колебаниями Q происходят также колебания угла нагрузки S.

Рис. •39-1. Векторы э. д. с. и напряжения синхронного генератора при колебаниях

Рис. 39-2. Колебания угловой скорости Й, угла нагрузки в и скольжения s синхронного генератора при внезапном изменении вращающего момента на валу М

Действительно, при# п > Qc ротор забегает вперед и угол 8 между векторами Ё и 0 при работе в режиме генератора увеличивается (рис. 39-1), а при U <Z Qc уменьшается.

Колебания угла е в свою очередь неразрывно связаны, как следует из векторных диаграмм, с колебаниями величин мощности Р и тока якоря /.

Поэтому внешне колебания синхронной машины проявляются в колебаниях стрелок ваттметров и амперметров. Чем больше амплитуда колебаний. Q и е, тем больше также колебания Р и /. Если мощность сети мала, то возникают также колебания величины напряжения U.

При й =fc Qc ротор вращается с некоторым скольжением s относительно магнитного поля статора, и поэтому при колебаниях синхронной машины колеблется также величина s. На рис. 39-2 представлены кривые затухающих колебаний Q, 6 и s. Индексы 1

относятся к исходному режиму, до начала колебаний, а индексы 2 — к последующему режиму, после затухания колебаний.

В ряде случаев возникают весьма сильные колебания синхронных машин, которые серьезным образом нарушают их нормальную работу, а также работу энергосистемы в целом.

При колебаниях в синхронных машинах происходят сложные переходные процессы, которые ниже рассматриваются лишь в основных чертах и преимущественно с физической точки зрения.

Колебания синхронных машин бывают вынужденные и свободные.

Вынужденные колебания синхронной машины возникают в случаях, когда механический момент на валу непостоянен и содержит пульсирующие составляющие.

Чаще всего это бывает при соединении синхронных машин с поршневыми машинами (например, дизельный первичный двигатель у генератора и поршневой компрессор у двигателя).

Вынужденные колебания становятся особенно сильными, нежелательными и опасными, когда их частота /в близка к частоте собственных или свободных колебаний /0 и поэтому возникают резонансные явления, а также когда в общую сеть включено несколько синхронных машин, имеющих вынужденные колебания с одинаковыми или кратными частотами. Например, иногда возникают затруднения при параллельной работе так называемых синхронных дизель-генераторов, первичными двигателями которых являются дизели.

Для уменьшения вынужденных колебаний дизель-генераторы, а часто также двигатели поршневых компрессоров снабжаются маховиками. Маховики иногда присоединяются непосредственно к роторному колесу синхронной машины или ротор машины выполняется с повышенным маховым моментом (больший диаметр и вес). Дизель-генераторы имеют для уменьшения колебаний также успокоительные обмотки (о роли последних см. ниже).

Свободные колебания присущи самой природе синхронной машины, так как она при параллельной работе с сетью или другими синхронными машинами представляет собой колебательную систему.

Такие колебания возникают при любых внезапных или резких нарушениях или изменениях режима работы синхронной машины (наброс или сброс нагрузки, падение напряжения на зажимах, изменение тока возбуждения и пр.). Изображенные На рис. 39-2 колебания возникают; например, при внезапном увеличении вращающего момента первичного двигателя, как это показано в верхней части рисунка. В этом случае угол нагрузки генератора возрастает

от 9i до 62> и этот переход совершается путем колебаний с начальной амплитудой колебаний угла нагрузки, равной |Лбт0 = б2 —■ Ь\.

Свободные колебания присущи многим физическим объектам, причем их природа и характер у разнородных объектов во многом одинаковы и колебания этих объектов описываются аналогичными дифференциальными уравнениями.

Колебания ротора синхронной машины являются механическими. Такие колебания возникают в механических системах, в которых действуют упругие и инерционные силы, при всяких возмущениях, выводящих эту систему из положения равновесия. Упругие силы, стремящиеся вернуть колеблющуюся систему в положение равновесия, зависят от величины отклонения системы от положения равновесия и в простейшем случае пропорциональны этому отклонению. В положении равновесия эти силы равны нулю. Силы инерции стремятся препятствовать изменению скорости движения системы и пропорциональны ускорениям механических масс. Когда под воздействием упругой силы система подходит к положению равновесия, то вследствие инерции она переходит через это положение. При этом направление упругой силы изменяется на обратное, система вновь начинает приближаться к положению равновесия, но под влиянием инерции переходит его и т. д. Во время колебаний упругие и инерционные силы беспрерывно изменяются по величине и по знаку. В результате этого во время колебаний происходит беспрерывное превращение потенциальной энергии, связанной с упругими силами, в кинетическую, связанную с инерционными силами, и обратно. При колебаниях обычно действует также успокаивающая, или демпфирующая сила, которая вызывает затухание колебаний.

Затухание происходит тем сильнее, чем больше эта сила. Если она равна нулю, то колебания являются незатухающими, т. е. происходят с постоянной амплитудой.

Простейшим примером механической колебательной системы является спиральная пружина с подвешенным к ней грузом. При нарушении равновесия, например, путем внезапного увеличения или уменьшения веса груза система приходит в колебания, причем амплитуда колебаний равна разности положений груза в конечном и начальном положениях равновесия. Упругая сила в данном случае — это сила упругой деформации пружины, инерционная сила — сила инерции колеблющегося груза и успокаивающая сила — сила трения колеблющегося груза о воздух. Частота колебаний тем больше, чем больше жесткость пружины и чем меньше масса груза.

|При свободных колебаниях синхронной машины действуют совершенно аналогичные силы или, вернее, вращающие моменты,

поскольку в данном случае происходят колебания вращающегося тела — ротора синхронной машины. Упругим силам в данном случае соответствует электромагнитный момент, действующий на ротор и зависящий от угла нагрузки 6 (см. § 35-3). Деформация магнитного поля в зазоре при изменении угла нагрузки (см. рис. 35-6) аналогична деформации пружины и вызывает изменение электромагнитного момента. В этом отношении линии магнитной индукции уподобляются упругим нитям, играющим роль пружины. Инерционным-еилам соответствует инерционный, или динамический, вращающий момент ротора, возникающий при наличии положительного или отрицательного углового ускорения ротора.

Частота собственных колебаний синхронных машин /0 обычно составляет 0,5— 2,0гц.

Успокоительный момент синхронной машины, вызванный трением ее ротора о воздух и в подшипниках, весьма невелик, и им можно пренебречь.

Успокоение колебаний синхронной машины происходит в основном за счет момента, возникающего в результате того, что при

колебаниях ротор попеременно движется то быстрее, то медленнее магнитного поля статора и поэтому в обмотках возбуждения и успокоительной индуктируются токи. Этот успокоительный момент по своей природе вполне идентичен с асинхронным моментом синхронной машины (См. § 36-1), стремится восстановить синхронную скорость вращения и заглушить колебания, так как при п > Qc и s < 0 он является тормозящим, а при п < Qc и s>0 действует в сторону вращения ротора и является ускоряющим.

Обмотка возбуждения создает относительно слабый успокоительный момент, в особенности, когда угол 9 мал (область нормальных нагрузок) или близок к нулю (холостой ход). Это объясняется тем, что при 8=0 поток реакции якоря является чисто продольным-и небольшие смещения ротора относительно этого потока вызывают лишь небольшие изменения потокосцепления ротора, вследствие чего и токи, индуктируемые в этой обмотке, невелики.

Рис. 39-3 Свободные колебания синхронной машины при наличии (я) и отсутствии (б) успокоительной обмотки

Эффективным средством успокоения колебаний является Применение полной успокоительной обмотки (рис. 39-3), создающей большой успокоительный момент. Основное назначение этой обмотки как раз и заключается в успокоении свободных колебаний, откуда происходит и ее название.


Дата добавления: 2015-07-18; просмотров: 87 | Нарушение авторских прав


Читайте в этой же книге: Синхронизирующая мощность и синхронизирующий момент. | Работа синхронной машины при постоянной мощности и переменном возбуждении | Асинхронный режим невозбужденной синхронной машины | Асинхронный режим возбужденной синхронной машины | Синхронные двигатели | Способы пуска синхронных двигателей. | Синхронные компенсаторы | Действие симметричных составляющих токов в синхронной машине и параметры прямой, обратной и нулевой последовательности | Токи и сопротивления обратной последовательности.Представим себе, чтообмотка якоря (статор) синхронной машины питается напряжением обратной последовательности U2. | Вибрация. |
<== предыдущая страница | следующая страница ==>
ПОЛУЧИМ| Колебания синхронной машины

mybiblioteka.su - 2015-2025 год. (0.007 сек.)