Читайте также:
|
|
Индивидуальное задание по теме «Векторы в пространстве.
Скалярное, векторное и смешанное произведение».
1. Написать разложение вектора x по векторам p, q, r?
1.1. x = (-2; 4; 7) p = (0; 1; 2), q = (1; 0; 1), r = (-1; 2; 4).
1.2. x = (6; 12; -1) p = (1; 3; 0), q = (2; -1; 1), r = (0; -1; 2).
1.3. x = (1; -4; 4) p = (2; 1; -1), q = (0; 3; 2), r = (1; -1; 1).
1.4. x = (-9; 5; 5) p = (4; 1; 1), q = (2; 0; -3), r = (-1; 2; 1).
1.5. x = (-5; -5; 5) p = (-2; 0; 1), q = (1; 3; -1), r = (0; 4; 1).
1.6. x = (13; 2; 7) p = (5; 1; 0), q = (2; -1; 3), r = (1; 0; -1).
1.7. x = (-19; -1; 7) p = (0; 1; 1), q = (-2; 0; 1), r = (3; 1; 0).
1.8. x = (3; -3; 4) p = (1; 0; 2), q = (0; 1; 1), r = (2; -1; 4).
1.9. x = (3; 3; -1) p = (3; 1; 0), q = (-1; 2; 1), r = (-1; 0; 2).
1.10. x = (-1; 7; -4) p = (-1; 2; 1), q = (2; 0; 3), r = (1; 1; -1).
1.11. x = (6; 5; -14) p = (1; 1; 4), q = (0; -3; 2), r = (2; 1; -1).
1.12. x = (6; -1; 7) p = (1; -2; 0), q = (-1; 1; 3), r = (1; 0; 4).
1.13.x = (5; 15; 0) p = (1; 0; 5), q = (-1; 3; 2), r = (0; -1; 1).
1.14. x = (2; -1; 11) p = (1; 1; 0), q = (0; 1; -2), r = (1; 0; 3).
1.15. x = (11; 5; -3) p = (1; 0; 2), q = (-1; 0; 1), r = (2; 5; -3).
1.16. x = (8; 0; 5) p = (2; 0; 1), q = (1; 1; 0), r = (4; 1; 3).
1.17. x = (-2; 4; 7) p = (0; 1; 2), q = (1; 0; 1), r = (-1; 2; 4).
1.18. x = (6; 12; -1) p = (1; 3; 0), q = (2; -1; 1), r = (0; -1; 2).
1.19. x = (1; -4; 4) p = (2; 1; -1), q = (0; 3; 2), r = (1; -1; 1).
1.20. x = (-9; 5; 5) p = (4; 1; 1), q = (2; 0; -3), r = (-1; 2; 1).
1.21. x = (-5; -5; 5) p = (-2; 0; 1), q = (1; 3; -1), r = (0; 4; 1).
1.22. x = (13; 2; 7) p = (5; 1; 0), q = (2; -1; 3), r = (1; 0; -1).
1.23. x = (-19; -1; 7) p = (0; 1; 1), q = (-2; 0; 1), r = (3; 1; 0).
1.24. x = (3; -3; 4) p = (1; 0; 2), q = (0; 1; 1), r = (2; -1; 4).
1.25. x = (3; 3; -1) p = (3; 1; 0), q = (-1; 2; 1), r = (-1; 0; 2).
1.26. x = (-1; 7; -4) p = (-1; 2; 1), q = (2; 0; 3), r = (1; 1; -1).
1.27. x = (6; 5; -14) p = (1; 1; 4), q = (0; -3; 2), r = (2; 1; -1).
1.28. x = (6; -1; 7) p = (1; -2; 0), q = (-1; 1; 3), r = (1; 0; 4).
1.29.x = (5; 15; 0) p = (1; 0; 5), q = (-1; 3; 2), r = (0; -1; 1).
1.30. x = (2; -1; 11) p = (1; 1; 0), q = (0; 1; -2), r = (1; 0; 3).
2. Коллинеарны ли векторы m и n, построенные по векторам a и b?
2.1.a = (1; -2; 3) b = (3; 0; 1), m = 2 a + 4 b, n = 3 b – a.
2.2. a = (1; 0; 1) b = (-2; 3; 5), m = a + 2 b, n = 3 a – b.
2.3. a = (-2; 4; 1) b = (1; -2; 7), m = 5 a + 3 b, n = 2 a – b.
2.4. a = (1; 2; -3) b = (2; -1; -1), m = 4 a + 3 b, n = 8 a – b.
2.5. a = (3; 5; 4) b = (5; 9; 7), m = -2 a + b, n = 3 a – 2 b.
2.6. a = (1; 4; -2) b = (1; 1; -1), m = a + b, n = 4 a + 2 b.
2.7. a = (1; -2; 5) b = (3; -1; 0), m = 4 a - 2 b, n = b – 2 a.
2.8. a = (3; 4; -1) b = (2; -1; 1), m = 6 a - 3 b, n = b – 2 a.
2.9. a = (-2; -3; -2) b = (1; 0; 5), m = 3 a + 9 b, n = – a –3 b.
2.10. a = (-1; 4; 2) b = (3; -2; 6), m = 2 a – b, n = 3 b – 6 a.
2.11. a = (5; 0; -1) b = (7; 2; 3), m = 2 a – b, n = 3 b – 6 a.
2.12. a = (0; 3; -2) b = (1; -2; 1), m = 5 a – 2 b, n = 3 a + 5 b.
2.13. a = (-2; 7; -1) b = (-3; 5; 2), m = 2 a + 3 b, n = 3 a + 2 b.
2.14. a = (3; 7; 0) b = (1; -3; 4), m = 4 a - 2 b, n = b – 2 a.
2.15. a = (-1; 2; -1) b = (2; -7; 1), m = 6 a - 2 b, n = b – 3 a.
2.16. a = (7; 9; -2) b = (5; 4; 3), m = 4 a - b, n = 4 b – a.
2.17.a = (1; -2; 3) b = (3; 0; 1), m = 2 a + 4 b, n = 3 b – a.
2.18. a = (1; 0; 1) b = (-2; 3; 5), m = a + 2 b, n = 3 a – b.
2.19. a = (-2; 4; 1) b = (1; -2; 7), m = 5 a + 3 b, n = 2 a – b.
2.20. a = (1; 2; -3) b = (2; -1; -1), m = 4 a + 3 b, n = 8 a – b.
2.21. a = (3; 5; 4) b = (5; 9; 7), m = -2 a + b, n = 3 a – 2 b.
2.22. a = (1; 4; -2) b = (1; 1; -1), m = a + b, n = 4 a + 2 b.
2.23. a = (1; -2; 5) b = (3; -1; 0), m = 4 a - 2 b, n = b – 2 a.
2.24. a = (3; 4; -1) b = (2; -1; 1), m = 6 a - 3 b, n = b – 2 a.
2.25. a = (-2; -3; -2) b = (1; 0; 5), m = 3 a + 9 b, n = – a –3 b.
2.26. a = (-1; 4; 2) b = (3; -2; 6), m = 2 a – b, n = 3 b – 6 a.
2.27. a = (5; 0; -1) b = (7; 2; 3), m = 2 a – b, n = 3 b – 6 a.
2.28. a = (0; 3; -2) b = (1; -2; 1), m = 5 a – 2 b, n = 3 a + 5 b.
2.29. a = (-2; 7; -1) b = (-3; 5; 2), m = 2 a + 3 b, n = 3 a + 2 b.
2.30. a = (3; 7; 0) b = (1; -3; 4), m = 4 a - 2 b, n = b – 2 a.
3. Найти косинус угла между векторами AB и AC.
3.1. A(1; -2; 3), B(0; -1; 2), C(3; -4; 5).
3.2. A(0; -3; 6), B(-12; -3; -3), C(-9; -3; -6).
3.3. A(3; 3; -1), B(5; 5; -2), C(4; 1; 1).
3.4. A(-1; 2; -3), B(3; 4; -6), C(1; 1; -1).
3.5. A(-4; -2; 0), B(-1; -2; 4), C(3; -2; 1).
3.6. A(5; 3; -1), B(5; 2; 0), C(6; 4; -1).
3.7. A(-3; -7; -5), B(0; -1; -2), C(2; 3; 0).
3.8. A(2; -4; 6), B(0; -2; 4), C(6; -8; 10).
3.9. A(0; 1; -2), B(3; 1; 2), C(4; 1; 1).
3.10. A(3; 3; -1), B(1; 5; -2), C(4; 1; 1).
3.11. A(2; 1; -1), B(6; -1; -4), C(4; 2; 1).
3.12. A(-1; 2; 1), B(-4; -2; 5), C(-8; -2; 2).
3.13. A(6; 2; -3), B(6; 3; -2), C(7; 3; -3).
3.14. A(0; 0; 4), B(-3; -6; 1), C(-5; -10; -1).
3.15. A(2; -8; -1), B(4; -6; 0), C(-2; -5; -1).
3.16. A(3; -6; 9), B(0; -3; 6), C(9; -12; 15).
3.17. A(1; -2; 3), B(0; -1; 2), C(3; -4; 5).
3.18. A(0; -3; 6), B(-12; -3; -3), C(-9; -3; -6).
3.19. A(3; 3; -1), B(5; 5; -2), C(4; 1; 1).
3.20. A(-1; 2; -3), B(3; 4; -6), C(1; 1; -1).
3.21. A(-4; -2; 0), B(-1; -2; 4), C(3; -2; 1).
3.22. A(5; 3; -1), B(5; 2; 0), C(6; 4; -1).
3.23. A(-3; -7; -5), B(0; -1; -2), C(2; 3; 0).
3.24. A(2; -4; 6), B(0; -2; 4), C(6; -8; 10).
3.25. A(0; 1; -2), B(3; 1; 2), C(4; 1; 1).
3.26. A(3; 3; -1), B(1; 5; -2), C(4; 1; 1).
3.27. A(2; 1; -1), B(6; -1; -4), C(4; 2; 1).
3.28. A(-1; 2; 1), B(-4; -2; 5), C(-8; -2; 2).
3.29. A(6; 2; -3), B(6; 3; -2), C(7; 3; -3).
3.30. A(0; 0; 4), B(-3; -6; 1), C(-5; -10; -1).
4. Компланарны ли векторы a, b и с?
4.1.а = (2, 3, 1), b = (-1, 0, -1), c = (2, 2, 2).
4.2.а = (3, 2, 1), b = (2, 3, 4), c = (3, 1, -1).
4.3.а = (1, 5, 2), b = (-1, 1, -1), c = (1, 1, 1).
4.4.а = (1, -1, -3), b = (3, 2, 1), c = (2, 3, 4).
4.5.а = (3, 3, 1), b = (1, -2, 1), c = (1, 1, 1).
4.6.а = (3, 1, -1), b = (-2, -1, 0), c = (5, 2, -1).
4.7.а = (4, 3, 1), b = (1, -2, 1), c = (2, 2, 2).
4.8.а = (4, 3, 1), b = (6, 7, 4), c = (2, 0, -1).
4.9.а = (3, 2, 1), b = (1, -3, -7), c = (1, 2, 3).
4.10. а = (3, 7, 2), b = (-2, 0, -1), c = (2, 2, 1).
4.11. а = (1, -2, 6), b = (1, 0, 1), c = (2, -6, 17).
4.12. а = (6, 3, 4), b = (-1, -2, -1), c = (2, 1, 2).
4.13.а = (7, 3, 4), b = (-1, -2, -1), c = (4, 2, 4).
4.14.а = (2, 3, 2), b = (4, 7, 5), c = (2, 0, -1).
4.15.а = (5, 3, 4), b = (-1, 0, -1), c = (4, 2, 4).
4.16.а = (3, 10, 5), b = (-2, -2, -3), c = (2, 4, 3).
4.17.а = (2, 3, 1), b = (-1, 0, -1), c = (2, 2, 2).
4.18.а = (3, 2, 1), b = (2, 3, 4), c = (3, 1, -1).
4.19.а = (1, 5, 2), b = (-1, 1, -1), c = (1, 1, 1).
4.20.а = (1, -1, -3), b = (3, 2, 1), c = (2, 3, 4).
4.21.а = (3, 3, 1), b = (1, -2, 1), c = (1, 1, 1).
4.22.а = (3, 1, -1), b = (-2, -1, 0), c = (5, 2, -1).
4.23.а = (4, 3, 1), b = (1, -2, 1), c = (2, 2, 2).
4.24.а = (4, 3, 1), b = (6, 7, 4), c = (2, 0, -1).
4.25.а = (3, 2, 1), b = (1, -3, -7), c = (1, 2, 3).
4.26. а = (3, 7, 2), b = (-2, 0, -1), c = (2, 2, 1).
4.27. а = (1, -2, 6), b = (1, 0, 1), c = (2, -6, 17).
4.28. а = (6, 3, 4), b = (-1, -2, -1), c = (2, 1, 2).
4.29. а = (7, 3, 4), b = (-1, -2, -1), c = (4, 2, 4).
4.30.а = (2, 3, 2), b = (4, 7, 5), c = (2, 0, -1).
Вычислить площадь параллелограмма, построенного на векторах аиb.
5.1. a = p + 2 q, b = 3 p – q;
5.2. a = 3 p + q, b = p – 2 q;
5.3. a = p - 3 q, b = p + 2 q;
5.4. a = 3 p - 2 q, b = p + 5 q;
5.5. a = p - 2 q, b = 2 p + q;
5.6. a = p + 3 q, b = p – 2 q;
5.7. a = 2 p - q, b = p + 3 q;
5.8. a = 4 p + q, b = p – q;
5.9. a = p - 4 q, b = 3 p + q;
5.10. a = p + 4 q, b = 2 p – q;
5.11. a = 3 p + 2 q, b = p – q;
5.12. a = 4 p - q, b = p + 2 q;
5.13. a = 2 p + 3 q, b = p – 2 q;
5.14. a = 3 p - q, b = p + 2 q;
5.15. a = 2 p + 3 q, b = p – 2 q;
5.16. a = 2 p - 3 q, b = 3 p + q;
5.17. a = p + 2 q, b = 3 p – q;
5.18. a = 3 p + q, b = p – 2 q;
5.19. a = p - 3 q, b = p + 2 q;
5.20. a = 3 p - 2 q, b = p + 5 q;
5.21. a = p - 2 q, b = 2 p + q;
5.22. a = p + 3 q, b = p – 2 q;
5.23. a = 2 p - q, b = p + 3 q;
5.24. a = 4 p + q, b = p – q;
5.25. a = p - 4 q, b = 3 p + q;
5.26. a = p + 4 q, b = 2 p – q;
5.27. a = 3 p + 2 q, b = p – q;
5.28. a = 4 p - q, b = p + 2 q;
5.29. a = 2 p + 3 q, b = p – 2 q;
5.30. a = 3 p - q, b = p + 2 q;
6. Вычислить объем тетраэдра с вершинами в точках А, В, С, D и его высоту, опущенную из вершины D на грань ABC.
6.1. A(1, 3, 6), B(2, 2, 1), C(-1, 0, 1), D(-4, 6, -3).
6.2. A(-4, 2, 6), B(2, -3, 0), C(-10, 5, 8), D(-5, 2, -4).
6.3. A(7, 2, 4), B(7, -1, -2), C(3, 3, 1), D(-4, 2, 1).
6.4. A(2, 1, 4), B(-1, 5, -2), C(-7, -3, 2), D(-6, -3, 6).
6.5. A(-1, -5, 2), B(-6, 0, -3), C(3, 6, -3), D(-10, 6, 7).
6.6. A(0, -1, -1), B(-2, 3, 5), C(1, -5, -9), D(-1, -6, 3).
6.7. A(5, 2, 0), B(2, 5, 0), C(1, 2, 4), D(-1, 1, 1).
6.8. A(2, -1, -2), B(1, 2, 1), C(5, 0, -6), D(-10, 9, -7).
6.9. A(-2, 0, -4), B(-1, 7, 1), C(4, -8, -4), D(1, -4, 6).
6.10. A(14, 4, 5), B(-5, -3, 2), C(-2, -6, -3), D(-2, 2, -1).
6.11. A(1, 2, 0), B(3, 0, -3), C(5, 2, 6), D(8, 4, -9).
6.12. A(2, -1, 2), B(1, 2, -1), C(3, 2, 1), D(-4, 2, 5).
6.13. A(1, 1, 2), B(-1, 1, 3), C(2, -2, 4), D(-1, 0, -2).
6.14. A(2, 3, 1), B(4, 1, -2), C(6, 3, 7), D(7, 5, -3).
6.15. A(1, 1, -1), B(2, 3, 1), C(3, 2, 1), D(5, 9, -8).
6.16. A(1, 5, -7), B(-3, 6, 3), C(-2, 7, 3), D(-4, 8, -12).
6.17. A(1, 3, 6), B(2, 2, 1), C(-1, 0, 1), D(-4, 6, -3).
6.18. A(-4, 2, 6), B(2, -3, 0), C(-10, 5, 8), D(-5, 2, -4).
6.19. A(7, 2, 4), B(7, -1, -2), C(3, 3, 1), D(-4, 2, 1).
6.20. A(2, 1, 4), B(-1, 5, -2), C(-7, -3, 2), D(-6, -3, 6).
6.21. A(-1, -5, 2), B(-6, 0, -3), C(3, 6, -3), D(-10, 6, 7).
6.22. A(0, -1, -1), B(-2, 3, 5), C(1, -5, -9), D(-1, -6, 3).
6.23. A(5, 2, 0), B(2, 5, 0), C(1, 2, 4), D(-1, 1, 1).
6.24. A(2, -1, -2), B(1, 2, 1), C(5, 0, -6), D(-10, 9, -7).
6.25. A(-2, 0, -4), B(-1, 7, 1), C(4, -8, -4), D(1, -4, 6).
6.26. A(14, 4, 5), B(-5, -3, 2), C(-2, -6, -3), D(-2, 2, -1).
6.27. A(1, 2, 0), B(3, 0, -3), C(5, 2, 6), D(8, 4, -9).
6.28. A(2, -1, 2), B(1, 2, -1), C(3, 2, 1), D(-4, 2, 5).
6.29. A(1, 1, 2), B(-1, 1, 3), C(2, -2, 4), D(-1, 0, -2).
6.30. A(2, 3, 1), B(4, 1, -2), C(6, 3, 7), D(7, 5, -3).
Дата добавления: 2015-07-17; просмотров: 399 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Оценка работы студента-практиканта | | | Оценка работы студента-практиканта |