Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Движение электрона в однородном магнитном поле

Читайте также:
  1. D. Движение золота, золотой стандарт и фиксированные обменные курсы
  2. I. ДВИЖЕНИЕ КАПИТАЛА
  3. IV. Движение работников
  4. Анархическое движение рубежа 19-20 веков
  5. ВОЛНОВОЕ ДВИЖЕНИЕ ГАЗА
  6. Волновое движение. Продольные и поперечные волны
  7. Выдвижение

Для решения этой задачи так же воспользуемся прямоугольной системой координат. Ось у направим навстречу вектору магнитной индукции В, а ось x – так, чтобы вектор скорости электрона u, находящегося в момент времени t = 0 в точке начала координат, лежал в плоскости XOY, т.е. имеем компоненты uxo и uyo.

В отсутствии электрического поля система уравнений движения электрона принимает вид:

 

m = – е (uу × Вz – uz By);

m = – e (uz Bx – ux Bz);

m =– –e (ux By – uy Bx),

 

или с учетом условий Bx =Bz =0, а Ву = – В:

m = e B uz;

m = 0;

m =e Bux.

Интегрирование второго уравнения системы с учетом начального условия: при t= 0, uy=uyo приводит к соотношению:

т.е. показывает, что магнитное поле не влияет на компоненту скорости электрона в направлении силовых линий поля.

Совместное решение первого и третьего уравнений системы, состоящее в дифференцировании первого по времени и подстановке значения duz /dt из третьего, приводит к уравнению, связывающему скорость электрона u x cо временем:

= 0,

где

Решение уравнений такого типа можно представить в виде:

 

ux = A cosw t + C sinw t,

причем из начальных условий при t =0, ux = uxo, dux /dt = 0 (что следует из первого уравнения системы, так как uzo = 0) вытекает, что

ux = uxo × cos w t.

Кроме того, дифференцирование этого уравнения с учетом первого уравнения системы приводит к выражению:

 

u z = uxo× sinw t.

Заметим, что возведение в квадрат и сложение двух последних уравнений дает выражение:

ux2 + uz2= uxo2 = const,

которое еще раз подтверждает, что магнитное поле не изменяет величины полной скорости (энергии) электрона.

В результате интегрирования уравнения, определяющего его u x, получаем:

x = × sin w t,

 

постоянная интегрирования в соответствии с начальными условиями равна нулю.

Интегрирование уравнения, определяющего скорость uz с учетом того, что при z = 0, t =0 позволяет найти зависимость от времени координаты Z электрона:

Решая два последних уравнения относительно sinwt и coswt, возводя в квадрат и складывая, после несложных преобразований получаем уравнение проекции траектории электрона на плоскости XOZ:

 

Это уравнение окружности радиуса r = / w, центр которой расположен на оси z на расстоянии r от начала координат (рис. 3.2). Сама траектория электрона представляет собой цилиндрическую спираль радиуса c шагом . Из полученных уравнений очевидно также, что величина представляет собой круговую частоту движения электрона по этой траектории.

 


Дата добавления: 2015-07-17; просмотров: 224 | Нарушение авторских прав


Читайте в этой же книге: Собственные и примесные полупроводники | Плотность энергетических уровней | Поверхностный потенциальный барьер | Термоэлектронная эмиссия | Влияние внешнего ускоряющего поля на термоэмиссию | Электростатическая (автоэлектронная) эмиссия | Взрывная эмиссия | Фотоэлектронная эмиссия | Вторичная эмиссия | Движение электронов в вакууме в электрическом и магнитных полях |
<== предыдущая страница | следующая страница ==>
Движение электрона в однородном электрическом поле| Электрический ток в вакууме при наличии объемного заряда

mybiblioteka.su - 2015-2024 год. (0.005 сек.)