Читайте также:
|
|
Как было указано выше, одним из самых больших недостатков вольфрама является плохое сопротивление термическому удару. Затрачено много усилий для устранения этого недостатка путем подбора формы, размеров, толщин изделий из него с целью ослабления внутренних термических напряжений в материале.
Авторы [43]дают математическое обоснование термостойкости и по приведенной формуле вычисляют внутренние напряжения в образцах вольфрама. В формулу входят измеренные деформации, температура поверхности, геометрические размеры, механические и теплофизические свойства материала.
Общепринятых методик испытаний на термическую стойкость нет. Обычно в каждом конкретном случае условия испытаний пытаются приблизить к натурным. Например, в работе Д. Гордона были взяты трубчатые образцы с наружным диаметром 38 мм, внутренним – 18 мм и длиной 51 мм. Таким образом, толщина стенки образца – 10 мм; с одной стороны к стенке подводилось тепло с удельным потоком: Q=1.3•107Дж/м2•с=1,3•107 Вт/м2, с другой – вода.
Образец из псевдосплава W+Agрастрескался с громким шумом через 8 секунд. За критерий термостойкости была взята величина удельного потока Q.
Оказалось, что наилучшей термостойкостью обладают образцы из псевдосплавов вольфрама с серебром и медью. Кованный вольфрам обладает тоже более высокой термостойкостью, чем просто спеченный, но несколько ниже указанных псевдосплавов.
Конечно, большую роль играет скорость нагрева, т.е. dT/dτ.
Авторы приводят формулу для количественного определения параметра термостойкости:
где: α – коэффициент термического расширения; Е – модуль упругости; φ – скорость повышения температуры; b – наружный радиус образца; а – внутренний радиус образца; μ – коэффициент Пуассона;
r – текущее значение радиуса;D=𝜆/(С•γ) – температуропроводность; σразг. – разрушающее напряжение.
Чем больше параметр ∆P1, тем хуже термостойкость. Но кроме указанных величин, входящих в формулу, нужно учитывать:
- порог хрупкости;
- форму и размеры изделий;
- чувствительность к скорости деформации;
- пластичность;
- состояние поверхности;
- чувствительность материала к надрезу;
- внутреннюю структуру материала;
- изменение характеристик с изменениями температуры.
На образец действуют с одно стороны растягивающие напряжения, с другой – сжимающие, в результате чего в образце возникают изгибающие напряжения. Если материал хрупок, под действием последних он растрескивается, если пластичен – происходит перераспределение напряжений внутри образца. При увеличении толщины стенки образца (b-a) параметр ∆P1 где-то достигает максимума, и толщина становится при этом критической. Для вольфрама она близка к 10 мм, хотя и зависит от структуры, скорости подъема температуры и других характеристик, указанных выше.
Для выбранных образцов в данном случае растрескивание происходит при скорости подъема температуры 1650 к/с для вольфрама, пропитанного медью. Для напряженного и рекристаллизованного материала эта скорость составляет всего 750 К/с. Число концентраторов напряжений можно уменьшить путем предварительного окисления поверхности или шлифования ее. Но это касается вольфрама, непропитанного медью. Отечественный опыт говорит о том, что пропитанные медью образцы нельзя шлифовать, т.к. при этом создается ложная бездефектность поверхности, и это мешает определить настоящее ее состояние при контроле.
Дата добавления: 2015-07-16; просмотров: 89 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ХИМИЧЕСКИЕ СВОЙСТВА ВОЛЬФРАМА | | | ДЕЙСТВИЕ ГОРЯЧИХ ГАЗОВ НА ВОЛЬФРАМ |