Читайте также: |
|
Факторный анализ — это процедура установления силы влияния факторов на функцию или результативный признак (полезный эффект машины, элементы совокупных затрат, производительности труда и т.д.) с целью ранжирования факторов для разработки плана организационно-технических мероприятий по улучшению функции.
Применение методов факторного анализа требует большой подготовительной работы и трудоемких по установлению моделей расчетов. Поэтому без ЭВМ не рекомендуется применять методы корреляционного и регрессионного анализа, главных компонентов. К тому же в настоящее время для ЭВМ разных классов имеются стандартные программы по этим методам. В свою очередь, пользоваться установленными с помощью ЭВМ моделями очень просто.
На подготовительной стадии факторного анализа большое внимание следует уделять качеству матрицы исходных данных для ЭВМ. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.
К исходным данным предъявляются следующие требования:
а) в объем выборки должны включаться данные только по однородной совокупности объектов анализа, т.е. одного назначения и класса, используемых (изготавливаемых, функционирующих) в аналогичных условиях по характеру и типу производства, режиму работы, географическому району и т.д. Если необходимо увеличить размер матрицы, то исходные данные отдельных объектов могут быть приведены в сравнимый вид с большинством объектов по отличающимся признакам умножением на корректирующие коэффициенты;
б) период динамического ряда исходных данных должен быть небольшим, но, по возможности, одинаковым для всех объектов. Устойчивый период упреждения (зона прогноза) обычно в два и более раза меньше периода динамического ряда. Например, по данным за 1985—1995 гг. можно разработать прогноз до 2000 г., а в последующие годы по фактическим данным модель должна обновляться (уточняться);
в) исходные данные должны быть качественно однородными, с небольшими интервалами между ними;
г) следует применять одинаковые методы или источники формирования данных. Если динамический ряд имеет крупные структурные сдвиги (например из-за изменения цен, ассортимента выпускаемой продукции, программы ее выпуска и т.д.), то все данные должны быть приведены в сравнимый вид или одинаковые условия;
д) отдельные исходные данные должны быть независимы от предыдущих и последующих наблюдений. Например, наблюдение не должно определяться расчетным путем по предыдущему наблюдению.
Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты предполагается выполнять на ЭВМ по стандартной программе. Конечные результаты расчета выдаются на печать (табл. 7.2).
Факторный анализ следует проводить в следующей последовательности:
1. Обоснование объекта анализа, постановка цели.
2. Сбор исходных данных и их уточнение в соответствии с ранее описанными требованиями.
Таблица 7.2
Дата добавления: 2015-07-16; просмотров: 113 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Ситуация 2 | | | Основные параметры корреляционно-регрессионного анализа |