Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Определение перемещений при изгибе по способу Верещагина

Читайте также:
  1. B. ПРОГРАММНОЕ ОПРЕДЕЛЕНИЕ НЕЙТРАЛЬНОГО ПОЛОЖЕНИЯ КОРОБКИ ПЕРЕДАЧ ДЛЯ АВТОМОБИЛЕЙ С НЕАВТОМАТИЧЕСКОЙ ТРАНСМИССИЕЙ (петля фиолетового провода должна быть перерезана)
  2. I. Измерение частотной характеристики усилителя и определение его полосы пропускания
  3. III. Определение соответствия порядка учета требованиям специальных правил, обстоятельств, затрудняющих объективное ведение бухгалтерской отчетности.
  4. XI. Определение терминов 1 страница
  5. XI. Определение терминов 2 страница
  6. XI. Определение терминов 3 страница
  7. XI. Определение терминов 4 страница

Существует несколько способов (методов) определения перемещений при изгибе: метод начальных параметров; энергетический метод; метод Мора и способ Верещагина. Графо- аналитический способ Верещагина по сути является частным случаем метода Мора при решении сравнительно простых задач, поэтому его еще называют способом Мора – Верещагина. Ввиду краткости нашего курса рассмотрим только этот способ.

 

Запишем формулу Верещагина

y = (1/EJ)*ωг, (1.14)

где y – перемещение в интересующем сечении;

E – модуль упругости; J – осевой момент инерции;

Рис.1.21

EJ – жесткостьбалки на изгиб; ωг – площадь грузовой эпюры моментов; М – момент, снятый с единичной эпюры под центром тяжести грузовой.

В качестве примера, определим прогиб консольной балки под действием силы, приложенной на свободном конце балки.

Построим грузовую эпюру моментов.

М(z) = - F* z. 0 ≤ z ≤ l.

М(0) = 0. М(l) = - F* l.

ωг – площадь грузовой эпюры, то есть площадь полученного треугольника.

ωг = - F* l* l/2 = - F* l2/2.

М – можно получить только с единичной эпюры.

Правило построения единичной эпюры:

1) с балки убираются все внешние силы;

2) в интересующем сечении прикладывают единичную силу (безразмерную) по направлению предполагаемого перемещения;

3) строят эпюру от этой единичной силы.

Центр тяжести прямоугольного треугольника лежит на 2/3 с вершины. Из центра тяжести грузовой эпюры спускаемся на единичную эпюру и отмечаем М1г. Из подобия треугольников можно записать

М /(- 1*l) = 2/3 l/ l, отсюда М = - 2/3 l.

Подставим полученные результаты в формулу (1.14).

y = (1/EJ)*ωг = (1/EJ)*(- F* l2/2)*(- 2/3 l) = F*l3/3EJ.

Расчет перемещений проводится после прочностного расчета, поэтому все необходимые данные известны. Подставив численные значения параметров в полученную формулу, Вы найдете перемещение балки в мм.

Рассмотрим еще одну задачу.

Предположим, Вы решили из круглого стержня сделать перекладину длиной 1,5 м для занятий гимнастикой. Необходимо подобрать диаметр стержня. Кроме того, Вы хотите знать, на сколько этот стержень прогнется под вашим весом.

Дано:

F = 800 Н (≈ 80кг); Сталь 20Х13 (нержавейка), имеющая σв = 647 МПа;

E = 8*104 МПа; l = 1,5 м; a = 0,7 м; b = 0,8 м.

Условия работы конструкции повышенной опасности (Вы сами крутитесь на перекладине), принимаем n = 5.

Соответственно

[σ] = σв/ n = 647/5 = 130 МПа.

 

 

Рис.1.22

Решение:

Расчетная схема показана на рис.1.22.

Определим реакции опор.

∑MВ = 0. RА*l – F*b = 0.

RА = F*b/l = 800*0,8/1,5 = 427 Н.

∑MА = 0. RВ*l – F*a = 0.

RВ = F*a/l = 800*0,7/1,5 = 373 Н.

Проверка

∑FY = 0. RА + RВ – F = 427 + 373 - 800 = 0.

Реакции найдены правильно.

 

Построим эпюру изгибающих моментов

(это и будет грузовая эпюра).

М(z1) = RА* z1. 0 ≤ z1 ≤ a.

М(0) = 0. М(a) = RА* a = 427*0,7 = 299 Н*м.

М(z2) = RА*(a + z2) – F* z2. 0 ≤ z2 ≤ b.

М(0) = RА* a = 427*0,7 = 299 Н*м.

М(b)=RА*(a +b) – F* b = 427*1,5 – 800* 0,8 = 0.

Из условия прочности запишем

Wх ≥ Мг/[σ] = 299*103/ 130 = 2300 мм3.

Для круглого сечения Wх = 0,1 d3, отсюда

d ≥ 3√10 Wх = 3 23000 = 28,4 мм ≈ 30 мм.

 

Определим прогиб стержня.

Расчетная схема и единичная эпюра показаны на рис.1.22.

Воспользовавшись принципом независимости действия сил и, соответственно, независимости перемещений, запишем

y = y1 + y2

y1 = (1/EJ)*ωг11 = (1/EJ)* F* a2* b/(2*l)* 2*a* b /(3*l) =

= F* a3* b2/(3* EJ* l2) = 800*7003*8002/(3*8*104*0,05*304*15002) = 8 мм.

y 2 = (1/EJ)*ωг22 = (1/EJ)* F* a* b2/(2*l)* 2*a* b /(3*l) = F* a2* b3/(3* EJ* l2)

= 800*7002*8003/(3*8*104*0,05*304*15002) = 9 мм.

y = y1 + y2 = 8 + 9 = 17 мм.

 

При более сложных расчетных схемах эпюры моментов приходится разделять на большее количество частей или аппроксимировать треугольниками и прямоугольниками. В результате решение сводится к сумме решений, аналогичных приведенным выше.

 


Дата добавления: 2015-07-16; просмотров: 185 | Нарушение авторских прав


Читайте в этой же книге: I. Основы сопротивления материалов. | Внешние силы (нагрузки). | Напряжения | Диаграмма растяжения | I I. Основы взаимозаменяемости | Посадки | Шероховатость поверхности | I I I Основы теории механизмов и машин (ТММ) | Элементы зубчатых колес. | Передаточное отношение, передаточное число |
<== предыдущая страница | следующая страница ==>
Методика решения практических задач| Устойчивость сжатых стержней

mybiblioteka.su - 2015-2024 год. (0.01 сек.)