Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

IX. Р-ция на присутствие серусодержащих АК

Читайте также:
  1. ВАШЕ ПРИСУТСТВИЕ НОЧЬЮ
  2. НАБЛЮДАЯ ЭФИРНОЕ ПРИСУТСТВИЕ
  3. Присутствие
  4. ПРОЗРАЧНОЕ ПРИСУТСТВИЕ
  5. ПРОШЛОЕ НЕСОВМЕСТИМО С ПРИСУТСТВИЕМ

Метионин
Цистеин

Цистин

Цистеин и цистин легко превращаются друг в друга за счет р-ции окисления-восстановления:

Цистеин Цистин + Н2О

Обмен серы в организме идет, в основном, за счет цистина и цистеина. Они обусловливают структуру белка, реактивность многих ферментов и гормонов. Качественной р-цией на серусодержащие АК является р-ция Фоля:

Коричневый

 

Белки

Это биополимеры, состоящие из ста и более АК остатков.

Классификация: простые белки (протеины), состоящие из a-АК, сложные белки (протеиды), состоящие из белковой и небелковой частей.

Аминокислотный состав определяет многие св-ва белков: заряд белковой молекулы, ИЭТ, способность к осаждению, структуру и биологическую активность.

В настоящее время синтезированы простейшие белки – инсулин, рибонуклеаза, окситацин и др.

Первичная структура

При всем многообразии пептидов и белков принцип построения их молекул одинаков – связь между a-АК осуществляется за счет –СООН гр. одной АК и –NH2 гр. другой АК, которая в свою очередь своей карбоксильной группой связывается с аминогруппой третьей АК и т.д. Связь между остатками АК, а именно между группой С=О одной к-ты и группой NH другой к-ты, является амидной связью. В химии пептидов и белков она наз-ся пептидной связью:

Пептидная связь

N-конец С-конец

Первичная структура пептидов и белков – это последовательность аминокислотных остатков в полипептидной цепи.

Вторичная структура

Цепи пептидов и белков принимают в пространстве определенную более или менее компактную форму. Уникальная особенность белковых молекул заключается в том, что они имеют, как правило, четкую пространственную структуру, или конформацию. Как только молекула окажется развернутой или уложенной иным способом в пространстве она почти всегда теряет свою биологическую функцию.

Л.Полинг, Р.Кори (1951) на основании расчетов предсказали наиболее выгодные способы укладки цепей в пространстве.

Пептидная цепь может укладываться в виде спирали (подобно винтовой лестницы). В одном витке спирали помещается около четырех АК остатков. Закрепление спирали обеспечивается водородными связями между группами С=О и NН, направленными вдоль оси спирали. Все боковые радикалы R АК находятся снаружи спирали. Такая конформация наз-ся a-спиралью. Другой вариант упорядоченной структуры полипептидной цепи – b-структура, или b-складчатый слой. В этом случае скелет находится в зигзагообразной конформации, и цепи располагаются параллельно друг другу, удерживаясь Н-связями.

Вторичная структура белка – это более высокий уровень структурной организации, в котором закрепление конформации происходит за счет Н-связей между пептидными группами.

Конформация белковой молекулы стабилизируется не только Н-связями, но и за счет некоторых ионных взаимодействий, а также за счет окисления SН-групп боковых радикалов R возникает ковалентная дисульфидная связь.

Третичная структура

Это укладка полипептидной цепи, включающей элементы той или иной вторичной структуры в пространстве, т.е. образование трехмерной конфигурации белка.

Чаще всего это – клубок. Стабилизируют третичную структуру Н-связи, электростатическое взаимодействие заряженных групп, межмолекулярные силы Ван дер Ваальса, гидрофобные взаимодействия.

 

Четвертичная структура

Несколько отдельных полипептидных цепей способны укладываться в более сложные образования, называемые также комплексами или агрегатами. При этом каждая цепь, сохраняя характерную для нее первичную, вторичную и третичную структуры, выступает в роли субъединицы комплекса с более высоким уровнем пространственной организацией – четвертичной структурой. Такой комплекс представляет собой единое целое и выполняет биологическую функцию, не свойственную отдельно взятым субъединицам. Четвертичная структура закрепляется за счет Н-связей и гидрофобных взаимодействий между субъединичными полипептидными цепями.

Определение четвертичной структуры белковых агрегатов возможно только с помощью высокоразрешающих физикохимических методов (рентгенография, электронная микроскопия). Четвертичная структура характерна лишь для некоторых белков, например, гемоглобина. Главная функция гемоглобина (основного компонента эритроцитов) состоит в переносе кислорода из легких к тканям организма. Его четвертичная структура – образование из четырех полипептидных цепей (субъединиц), каждая из которых содержит гем.

 

Физико-химичекие св-ва

Для белков характерны высокая вязкость р-ров, низкая диффузия, способность к набуханию, подвижность в электрическом поле, низкое осмотическое давление.

Белки, как и АК, амфотерны за счет свободных групп –NН2 и –СООН.

В зависимости от рН среды, соотношения кислых и оснóвных АК остатков белки несут положительный или отрицательный заряды, что и используется при электрофорезе.

Подобно биурету полипептиды и белки дают качественную р-цию с Сu(ОН)2 – красно-фиолетовое окрашивание и она наз-ся биуретовой р-цией.

Белки отличаются друг от друга по составу, форме, растворимости, биологической активности, молярной массе. Часть из них синтезируется в организме, другие должны поступать извне. Они состоят в основном из 20 АК остатков.

Строение белков было установлено на основе р-ций гидролиза. По продуктам гидролиза все белки делят на две группы:

 

Простые Сложные

(протеины) (протеиды)

Это белки крови: альбумин, Гемоглобин (НЬ), цитохромы,

глобулин, фибриноген и др. флавопротеиды и др.

При гидролизе простых белков При гидролизе сложных белков

образуется только АК образуются АК+др. соединения

(Ме, липиды, углеводы,

комплексные соединения и пр.)

 

Фибриллярные белки – это белки, молекулы которых состоят из параллельных, сравнительно вытянутых пептидных цепей, образуют палочковидные структуры. Они не растворимы и выполняют структурную и защитную функции в организме. Например, коллаген при нагревании превращается в беспорядочные клубки, получившие название желатины (в ней много глицина, гидроксипролина, гидроксилизина).

Глобулярные белки – это белки молекулы которых состоят из плотно свернутых полипептидных цепей и имеют форму, близкую к сферической. К ним относятся ферменты, антитела, гормоны, альбумин, гемоглобулин и др. Они растворимы в водно-солевых р-рах.

Некоторые белки, например, миозин и фибриноген имеют палочковидную структуру, однако хорошо растворимы в воде.

 

Денатурация белков

Под влиянием многих факторов пространственная структура способна разрушаться, что приводит к потере биологической активности белков. К таким факторам относятся повышенная температура, изменение рН среды, УФ – и рентгеновское излучения, механическое воздействие (встряхивание), соли тяжелых Ме, алкалоиды и др.

Денатурация белков – это разрушение их природной (нативной) пространственной структуры с сохранением первичной структуры. Денатурация редко бывает обратимой. В этих немногих случаях важно то, что беспорядочно скрученная молекула денатурированного белка самопроизвольно принимает нативную пространственную структуру с полным сохранением биологической функции.

В случаях отравления солями тяжелых Ме (ртути, свинца, серебра и др.) в качестве противоядия используют белки с повышенным содержанием кислотных групп, например яичный альбумин. Он действует как конкурент белков организма и сам связывает токсичный агент, образуя с ним нерастворимую соль, которая затем выводится из организма.

В организме содержится более 50.000 различных белков. Кожа содержит 63% от массы сухой ткани, кости – 20%, зубы – 18%.

 

Функции белков:

1. Питательная (энергетическая – 20-25% – на белки), 17,6 кДж/г.

2. Транспортная (переносчики различных веществ) – гемоглобин, миоглобин и др.

3. Сократительная (белки мышечных тканей) – миозин и др.

4. Структурная (пластическая) – коллаген, фиброин, мембранные белки.

5. Каталитическая (белки-ферменты) – пепсин, каталаза, уреаза и др.

6. Регуляторная (белки-гормоны) – инсулин, вазопрессин и др.

7. Защитная (белки-антитела) – g-глобулины сыворотки крови.

8. Осмотическая, буферная, водно-солевая.

Нуклеиновые к-ты (НК)

НК являются природными высокомолекулярными соединениями. Молекулярная масса НК колеблется от 200 тысяч до 20 миллионов. Они играют важную роль в передаче наследственных признаков и осуществляют контроль за синтезом специфических белков в организме.

Химический состав НК

В молекулах НК содержатся фосфорная к-та, пентозы и азотистые основания.

Пентозы в НК представлены рибозой и 2-дезоксирибозой в b-фуранозной форме:

b- Рибоза 2-b -Дезоксирибоза

Именно по характеру углеводного компонента–пентозы – все НК делятся на две большие группы:

1) рибонуклеиновые к-ты (РНК), содержащие рибозу,

2) дезоксирибонуклеиновые к-ты (ДНК), содержащие дезоксирибозу.

Азотистыми основаниями в НК являются производственные пурина и пиримидина.Из пуриновых оснований наиболее часто встречаются в составе НК аденин и гуанин:

Аденин, 6-аминопурин Гуанин, 2-амино-6-гидроксипурин

 

Из производных пиримидина чаще всего обнаруживаются цитозин, урацил, тимин, которые входят в состав НК в лактамной форме:

Цитозин, 2- гидроксо-4-амино- пиримидин Урацил, 2,4- дигидроксо- пиримидин Тимин, 5- метилурацил, 2,4- дигидроксо- 5- метилпиримидин  

НК отличаются по составу азотистых оснований. Аденин, гуанин и цитозин входят в состав РНК и ДНК. Урацил содержится только в РНК, а тимин – в ДНК. При написании названия азотистых оснований их часто обозначают первыми заглавными буквами: А- аденин, Ц- цитозин и т.д.


Дата добавления: 2015-07-15; просмотров: 139 | Нарушение авторских прав


Читайте в этой же книге: Изомерия | Классификация | III. Р-ции по –NH2 группе | IV. Отношение АК к нагреванию | Структура молекулы ДНК | Лабораторная работа |
<== предыдущая страница | следующая страница ==>
VI. Р-ции декарбоксилирования| Мононуклеотиды

mybiblioteka.su - 2015-2024 год. (0.01 сек.)