Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Постановка задачи Коши

Читайте также:
  1. I Цели и задачи изучения дисциплины
  2. I этап. Теоретический этап исследования (Постановка проблемы).
  3. I.Постановка цели.
  4. II. Основные задачи и функции деятельности ЦБ РФ
  5. II. Основные задачи и функции медицинского персонала
  6. II. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ БЮДЖЕТНОЙ ПОЛИТИКИ НА 2011–2013 ГОДЫ И ДАЛЬНЕЙШУЮ ПЕРСПЕКТИВУ
  7. II. Основные цели и задачи, сроки и этапы реализации подпрограммы, целевые индикаторы и показатели

Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: .

Решением этого уравнения является дифференцируемая функция , которая при подстановке в уравнение обращает его в тождество. На рис. 13 приведен график решения исходного дифференциального уравнения. График решения дифференциального уравнения называется интегральной кривой.

Рис. 13

 

Производную в каждой точке можно геометрически интерпретировать как тангенс угла наклона касательной к графику решения, проходящего через эту точку, т е.: .

Исходное уравнение определяет целое семейство решений. Чтобы выделить одно решение, задают начальное условие: , где – некоторое заданное значение аргумента , а начальное значение функции.

Задача Коши заключается в отыскании функции , удовлетворяющей исходному уравнению и начальному условию. Обычно определяют решение задачи Коши на отрезке, расположенном справа от начального значения , т. е. для . Разрешимость задачи Коши определяет следующая теорема.

Теорема. Пусть функция определена и непрерывна при , и удовлетворяет условию Липшица: , где некоторая постоянная, а – произвольные значения. Тогда для каждого начального значения существует единственное решение задачи Коши для .

Даже для простых дифференциальных уравнений первого порядка не всегда удается получить аналитическое решение. Поэтому большое значение имеют численные методы решения. Численные методы позволяют определить приближенные значения искомого решения на некоторой выбранной сетке значений аргумента . Точки называются узлами сетки, а величина – шагом сетки. Часто рассматривают равномерныесетки, для которых шаг постоянен, . При этом решение получается в виде таблицы, в которой каждому узлу сетки соответствуют приближенные значения функции в узлах сетки .

Численные методы не позволяют найти решение в общем виде, зато они применимы к широкому классу дифференциальных уравнений.

Сходимость численных методов решения задачи Коши. Пусть – решение задачи Коши. Назовем погрешностью численного метода функцию , заданную в узлах сетки . В качестве абсолютной погрешности примем величину .

Численный метод решения задачи Коши называется сходящимся, если для него при . Говорят, что метод имеет -ый порядок точности, если для погрешности справедлива оценка , константа, .

 


Дата добавления: 2015-07-15; просмотров: 78 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ| Типы руководителей

mybiblioteka.su - 2015-2024 год. (0.008 сек.)