Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Характеристики генераторов постоянного тока с параллельным возбуждением.

Читайте также:
  1. I. Измерение частотной характеристики усилителя и определение его полосы пропускания
  2. III. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ УСИЛИТЕЛЕЙ
  3. Quot;Угроза, я в опасности". – И какая же эмоция генерируется под воздействием этого постоянного сигнала? Страх, разумеется.
  4. VIII.2. Усилители постоянного тока прямого усиления.
  5. А.2 Гигиенические характеристики и нормы вибрации
  6. Административно-управленческие характеристики психотипов
  7. Акцент на удовлетворение и сохранение лояльности постоянного покупателя

Принцип самовозбуждения генератора постоянного тока осно­ван на том, что магнитная система машины, будучи намагничен­ной, сохраняет длительное время небольшой магнитный поток остаточного магнетизма сердечников полюсов и станины Фост (порядка 2—3 % от полного, потока). При вращении якоря поток Фост индуцирует в якорной обмотке ЭДС Еост под действием кото рой в обмотке возбуждения возникает небольшой ток Iв.ост. Если МДС обмотки возбуждения Iв.остωв имеет такое же направление, как и поток, то она увеличивает поток главных полюсов. Это, в свою очередь, вызывает увеличение ЭДС генератора, отчего ток возбуждения вновь увеличится. Так будет продолжаться до тех пор, пока напряжение генератора не будет уравновешено падением напряжения в цепи возбуждения, т.е. lBrB=U0.

Рис. 1. Принципиальная схема (а) и характеристика х. х. (б) генератора параллельного возбуждения

На рис. 1, а показана схема включения генератора парал­лельного возбуждения, на рис. 1, б — характеристика х.х. генератора (кривая 1) и зависимость падения напряжения от тока возбуждения Iвгв = f(Iв) (прямая 2). Точка пересечения А соответствует окончанию процесса самовозбуждения, так как именно в ней U0 = IBrB.

Угол наклона прямой ОЛ к оси абсцисс определяется из треугольника OAB: , где т i - масштаб тока (по оси абсцисс), А/мм; ти масштаб напряжения (по оси ординат), В/мм.

Угол наклона прямой Iвгв = f(Iв) к оси абсцисс прямо пропорционален сопротивлению цепи возбуждения. Однако при некотором значении сопротивления реостата rрг сопротивление гв достигает значения, при котором зависи­мость Iвrв = f(Iв) становится касательной к прямолинейной части характеристики х.х. (прямая 3). В этих условиях генератор не самовозбуждается. Сопротивление цепи возбуждения, при кото­рой прекращается самовозбуждение генератора, называют кри­тическим сопротивлением (гв.крит).

Следует отметить, что самовозбуждение генератора возможно лишь при частоте вра­щения, превышающей критическую пкр. Это условие вытекает из характеристики самовоз­буждения генератора (рис. 2), представ­ляющей собой зависимость напряжения гене­ратора в режиме х. х. от частоты вращения при неизменном сопротивлении цепи возбуж­дения, т.е. Uо=f(n) при rв = const.

Рис. 2. Характерис­тика самовозбуждения

Анализ характеристики самовозбуждения показывает, что при п<пкр увеличение частоты вращения якоря генератора сопровождается незначительным увеличением напряжения, так как процесса самовозбуждения нет и появление напряжения на выходе генератора обусловлено лишь остаточным намагничиванием магнитной цепи генератора. Про­цесс самовозбуждения начинается при п>пкр. В этом случае увеличение частоты вращения сопровождается резким ростом нап­ряжения U0. Однако при частоте вращения, близкой к номиналь­ной, рост напряжения несколько замедляется, что объясняется магнитным насыщением генератора. Критическая частота враще­ния зависит от сопротивления цепи возбуждения и с ростом послед­него увеличивается.

Таким образом, самовозбуждение генераторов постоянного тока возможно при соблюдении следующих условий: а) магнит­ная система машины должна обладать остаточным магнетиз­мом; б) присоединение обмотки возбуждения должно быть таким, чтобы МДС обмотки совпадала по направлению с потоком оста­точного магнетизма Фост; в) сопротивление цепи возбуждения должно быть меньше критического; г) частота вращения якоря должна быть больше критической.

Так как генератор параллельного возбуждения самовозбуж­дается лишь в одном направлении, то и характеристика х.х. этого генератора может быть снята только для одного квадранта осей координат.

Нагрузочная и регулировочная характеристики генератора параллельного возбуждения практически не отличаются от соот­ветствующих характеристик генератора независимого возбуж­дения

Внешняя характеристика генератора параллельного возбуждения 1 (рис. 3) менее жесткая, чем у генератора независи­мого возбуждения. Объясняется это тем, что в генераторе парал­лельного возбуждения помимо причин, вызывающих уменьшение напряжения в генераторе независимого возбуждения (реакция якоря и падение напряжения в цепи якоря), действует еще и третья причина — уменьшение тока возбуждения, вызванное снижением напряжения от действия первых двух причин. Этим же объясняется и то, что при постепенном уменьшении сопро­тивления нагрузки гн ток увеличивается лишь до критического значения Iкр, а затем при дальнейшем уменьшении сопротивления нагрузки ток начинает уменьшаться. Наконец, ток на­грузки при коротком замыка­нии Iк<Iкр. Дело в том, что с увеличением тока усиливается размагничивание генератора (усиление реакции якоря и уменьшение тока возбуждения), машина переходит в нена­сыщенное состояние, при котором даже небольшое умень­шение сопротивления нагрузки вызывает резкое уменьшение ЭДС машины (см. рис. 1, б). Т.к. ток определяется напряжением на выводах генератора U и сопротивлением нагрузки rн т.е. I=U/rн, то при токах нагрузки I<Iкр, когда напряжение генератора уменьшается медленнее, чем убывает сопротивление нагрузки, происходит рост тока нагрузки. После того как I=Iкр дальнейшее уменьшение гн сопровождается уменьшением тока нагрузки, так как в этом случае напряжение Uубывает быстрее, чем уменьшается сопротивление нагрузки гн.

Рис. 3. Внешняя характеристика генератора параллельного возбужде­ния

Таким образом, короткое замыкание, вызванное постепенным уменьшением сопротивления нагрузки, не опасно для генератора параллельного возбуждения. Но при внезапном к.з. магнитная система генератора не успевает размагнититься и ток Iкр дости­гает опасных для машины значений Iк=(8÷12)IНом. (кривая 2). При таком резком возрастании тока нагрузки на валу генератора возникает значительный тормозящий момент, а на коллекторе появляется сильное искрение, переходящее в круго­вой огонь. Поэтому необходимо защищать генератор от пере­грузки и к.з. посредством плавких предохранителей или же при­менением релейной защиты. Г енераторы параллельного возбуждения широко применяют в установках постоянного тока, т.к. отсутствие возбудителя выгодно отличает эти генераторы от генераторов независимого возбуждения. Номинальное изменение напряжения генерато­ра параллельного возбуждения составляет 10÷30%.

 

74.Двигатели постоянного тока. Энергетическая диаграмма. Уравнения напряжений, скоростей, моментов Двигатели постоянного тока находят широкое применение в промышленных, транспортных, крановых и других установках, где требуется широкое плавное регулирование частоты вращения. Одна и та же электрическая машина может работать как в режиме генератора, так и в режиме двигателя. Это свойство электрических машин называют обратимостью. Для двигателя, работающего с постоянной частотой вращения, можно составить уравнение э.д.с. UСЕТИЯ+IЯRЯ, где ЕЯ и IЯ э.д.с и ток, соответствующие установившемуся режиму работы; IЯRЯ – падение напряжения в сопротивлениях цепи якоря двигателя. Уравнение моментов двигателя. Электромагнитный момент двигателя М=(1/π)NIЯpФ/(2а)=CМIЯФ (7.2)

создается в результате взаимодействия основного магнитного поля Ф и тока в обмотке якоря IЯ и расходуется на преодоление тормозящих моментов: а) момента х.х. М0; б) полезного момента М2; в) динамического момента MjMj=±J(dω/d), Энергетическая диаграмма двигателя. На рисунке 7.3 изображена энергетическая диаграмма двигателя параллельного возбуждения, работающего в установившемся режиме, т.е. при n=const. К двигателю из сети подводится мощность P1=UCI, которая покрывает потери в цепи возбуждения RВ и электрические потери в цепи якоря I2ЯRЯ В зависимости от способа включения обмотки возбуждения и обмотки якоря различают следующие типы двигателей постоянного тока: а) параллельного возбуждения; б) последовательного возбуждения; в) смешанного возбуждения, в которых имеются две обмотки возбуждения: параллельная и последовательная. Двигатели постоянного тока оцениваются по совокупности следующих видов характеристик: пусковых, рабочих, регулировочных и механических.

 

75. Пуск в ход и пусковые характеристики двигатели постоянного тока. Пусковые характеристики. Пусковые характеристики определяются следующими величинами: а) пусковым током IПУСК характеризуемым отношением IПУСК / IНОМ; б) пусковом моментом МПУСК, характеризуемым отношением МПУСК / МНОМ в) плавностью пусковой операции; г) временем пуска в ход tПУСК; д) экономичностью операции, определяемой стоимостью пусковой аппаратуры.

В начальный момент пуска двигателя его якорь неподвижен, противо-э.д.с. в обмотке якоря равна нулю и ток в якоре двигателя IЯ=UС / RЯ. Сопротивление цепи якоря невелико, поэтому пусковой ток превышает номинальный в 20 и более раз. Резкий скачок тока при пуске создает на валу двигателя большой пусковой момент, который может вызвать механические разрушения, как самого двигателя, так и исполнительного механизма, привести к резкому падению напряжения в сети и вызвать интенсивное искрение под щетками. Поэтому при пуске двигателя в ход для ограничения пускового тока применяют пусковые реостаты, включаемые последовательно в цепь якоря (рисунок 1). По мере увеличения частоты вращения якоря противо-э.д.с. увеличивается, а ток якоря уменьшается, поэтому сопротивление реостата следует уменьшить так, чтобы в конце пуска оно было полностью выведено, и чтобы пусковой ток превышал номинальный не более чем в два-три раза. Для пуска в ход двигателей постоянного тока применяют двух-, трех- и четырехзажимные пусковые реостаты. На рисунке 1 представлена схема включения трехзажимного пускового реостата для двигателя параллельного возбуждения.

Реостат имеет шесть контактов: пять рабочих (1, 2, 3, 4, 5) и один холостой (нулевой 0); три зажима Л, Ш, Я, которые соответственно подключаются к линии, обмотке возбуждения и к якорю. Скользящий контакт реостата перемещается по неподвижным контактам и контактной дуге Д, благодаря которой обмотка возбуждения оказывается включенной на полное напряжение сети. Регулировочный реостат в цепи возбуждения rРГ следует вывести, так как в этом случае ток возбуждения IВ, магнитный поток Ф и вращающий момент двигателя достигают наибольшей величины, что облегчает пуск двигателя в ход. Пусковой реостат рассчитывают на кратковременный режим работы, когда количество его секций определяется условиями плавности пуска двигателя. Так как в первый момент пуска n=0, то и противо-э.д.с. ЕЯ=0, и IП.МАКС=UС / (RЯ+ΣRП), где RП – сумма сопротивлений всех секций пускового реостата. Так как вращающий момент двигателя М прямо пропорционален потоку Ф, то для облегчения пуска двигателя параллельного и смешанного возбуждения сопротивление реостата в цепи возбуждения rрг следует полностью вывести (rрг =0). Поток возбуждения Ф в этом случае получает наибольшее значение и двигатель развивает необходимый вращающий момент при меньшем токе якоря. Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громоздкими. Поэтому в двигателях большой мощности применяет безреостатный пуск двигателя путем понижения напряжения. Примерами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельные при нормальной работе или пуск двигателя в схеме «генератор-двигатель».

 


Дата добавления: 2015-07-15; просмотров: 209 | Нарушение авторских прав


Читайте в этой же книге: Векторная диаграмма неявнополюсной синхронной машины при RC и RL | Диаграмма Потье | Характеристики синхронного генератора. | Параллельная работа с сетью бесконечно большой мощности синхронных машин. Метод точной самосинхронизации. | Синхронный компенсатор | Принцип обратимости машины постоянного тока. | Основные элементы конструкции и принцип действия машины постоянного тока в режиме генератора. | Характеристики генераторов постоянного тока с независимым возбуждением. | Характеристики генераторов постоянного тока со смешанным возбуждением. | Характеристики генераторов постоянного тока с последовательным возбуждением. |
<== предыдущая страница | следующая страница ==>
Самовозбуждение машин постоянного тока.| Регулирование частоты вращения двигателей постоянного тока с параллельным возбуждением.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)