|
Синхронные машины – конструкция, принцип действия, область применения. СМ - электрическая машина переменного тока, у которой частота вращения ротора n находится в строгом соответствии с частотой сети f1: n = n1 = 60 f1 / p. Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор. Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Индуктор состоит из полюсов — электромагнитов постоянного тока[1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса. На статоре синхронной машины располагается трехфазная обмотка переменного тока, называемая обмоткой якоря, а на роторе располагается обмотка постоянного тока, называемая обмоткой возбуждения. Существует две основных разновидности исполнения обмоток возбуждения: распределенные и сосредоточенные. Распределенные обмотки применяются при неявнополюсной конструкции ротора (рис. 1).такая обмотка является однослойной. Неявнополюсная конструкция ротора Явнополюсная конструкция ротора Неявнополюсную конструкцию ротора имеют быстроходные синхронные машины с 2p=2 и 2p=4. Частота вращения ротора таких машин при f1=50Гц соответственно равна 3000 и 1500 об/мин. В машинах с 2p≥4 ротор имеет явнополюсную конструкцию (рис. 2). Обмотка возбуждения таких машин выполняется сосредоточенной в виде катушек (1) и размещается на сердечниках полюсов (2). Для закрепления катушек на полюсах используются полюсные наконечники (3). Для улучшения динамических свойств синхронной машины в полюсные наконечники помещают дополнительную короткозамкнутую обмотку (4)(успокоительную или демпферную). Синхронные машины используют главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения. |
2. Методы асинхронного пуска синхронного двигателя, особенности асинхронного |
момента синхронной машины. |
Синхронный двигатель не имеет начального пускового момента, для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.В настоящее время для этой цели применяют метод асинхронного пуска. При этом методе синхронный двигатель пускают как асинхронный, для чего его снабжают специальной коротко-замкнутой пусковой обмоткой, выполненной по типу «беличья клетка». Чтобы увеличить сопротивление стержней, клетку изготовляют из латуни. При включении трехфазной обмотки статора в сеть образуется вращающееся магнитное поле, которое, взаимодействуя с током Iпв пусковой обмотке,создает электромагнитные силы F и увлекает за собой ротор. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создает синхронизирующий момент, который втягивает ротор в синхронизм. Применяют две основные схемы пуска синхронного двигателя. При 1 схеме, обмотку возбуждения сначала замыкают на гасящий резистор, сопротивление которого Rдоб превышает в 8 — 12 раз активное сопротивление Rв обмотки возбуждения. После разгона ротора до частоты вращения, близкой к синхронной (при s ≈ 0,05), обмотку возбуждения отключают от гасящего резистора и подключают к источнику постоянного тока (возбудителю), вследствие чего ротор втягивается в синхронизм. При 2 схеме обмотка возбуждения постоянно подключена к возбудителю, сопротивление которого по сравнению с сопротивлением Rв весьма мало, поэтому эту обмотку в режиме асинхронного пуска можно считать замкнутой накоротко. С уменьшением скольжения до s = 0,3 ÷ 0,4 возбудитель возбуждается и в обмотку возбуждения подается постоянный ток, обеспечивающий при s ≈ 0,05 втягивание ротора в синхронизм. Различие пусковых схем обусловлено тем, что не во всех случаях может быть применена более простая схема с постоянно подключенной к возбудителю обмоткой возбуждения, так как она имеет худшие пусковые характеристики. Главной причиной ухудшения пусковых характеристик является возникновение одноосного эффекта — влияние тока, индуцируемого в обмотке возбуждения при пуске, на характеристику пускового момента. Наличие пусковой обмотки на роторе существенно уменьшает обратное магнитное поле и создаваемый им момент.включение гасящего сопротивления в цепь обмотки возбуждения на период пуска уменьшает ток в этой обмотке и улучшает форму кривой пускового момента. Следует отметить, что если обмотку возбуждения при пуске не отключить от возбудителя, то по якорю возбудителя в период пуска проходит переменный ток, что может вызвать искренне щеток. Поэтому такую схему пуска применяют в Случае небольшого нагрузочного момента — не более 50 % от Номинального, при сравнительно небольшой мощности двигателя. |
Пуск с разрядным сопротивлением:
Пуск с наглухо подключенным возбудителем
Обычно производится прямой асинхронный пуск СД путум включения на полное напряжение сети. При тяжелых условиях пуска производится реакторный или трансформаторный пуск при пониженным напряжении, как и у АД с короткозамкнутым ротором.
В общем случае асинхронный вращающий момент:
где М1 – вращающий момент, М2 – величина момента, созданного токами I2
Дата добавления: 2015-07-15; просмотров: 103 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Анализаторы каналов Е1 | | | Билет № 2 |