Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Получение лимонной кислоты.

Читайте также:
  1. Билет№29 Нуклеиновые кислоты. Роль ДНК и РНК в реализации наследственной информации в клетке. Доказательства наследственной роли ДНК (опыты Ф.Гриффитса и О.Эвери)
  2. ВОЗМОЖНО ПОЛУЧЕНИЕ КНИГИ СО СКЛАДА В МОСКВЕ И ДОСТАВКА В РЕГИОНЫ
  3. Глава 26. ГАРАНТИИ И КОМПЕНСАЦИИ РАБОТНИКАМ, СОВМЕЩАЮЩИМ РАБОТУ С ПОЛУЧЕНИЕМ ОБРАЗОВАНИЯ
  4. Дарение — получение
  5. Категории студентов, имеющие право на получение материальной помощи
  6. Коносамент - это документ стандартной формы, принятой в международной практике на перевозку груза, который удостоверяет его погрузку, перевозку и право на получение.
  7. Кто имеет право на получение листка нетрудоспособности.

Лимонная кислота (СН2 – СООН – СОНСООН – СН2СООН) – трехосновная оксикислота, широко распространенная в плодах и ягодах. Она широко применяется в пищевой промышленности при производстве кондитерских изделий и напитков, в фармацевтической, химической и текстильной промышленности. Лимонная кислота была идентифицирована в качестве продукта метаболизма плесневых грибов в 1893 г. Вемером. В настоящее время это кислота по объемам производства (свыше 350 тыс. т/г) занимает первое место среди всех органических кислот.

У микроорганизмов синтез лимонной кислоты реализуется в цикле дикарбоновых кислот и осуществляется в результате конденсации кислоты с четырьмя атомами углерода и двумя карбоксильными группами и кислоты с одной карбоксильной группой. Образуемая в результате гликолиза пировиноградная кислота связывается с углекислотой; синтезируемая при этом щавелевоуксусная кислота реагирует с уксусной кислотой с образованием лимонной кислоты, то есть образование лимонной кислоты включает реакции гликолиза и ряд реакций цикла Кребса. При каждом обороте цикла молекула щавелевоуксусной кислоты взаимодействует с уксусной, образуя лимонную кислоту:

Производство лимонной кислоты методом ферментации плесневых грибов принадлежит к числу давних биотехнологических процессов. Первое производство было реализовано в конце XIX века. Совершенствование процесса получения лимонной кислоты тесно связано с разработкой многих фундаментальных аспектов микробиологии (борьбой с микробным загрязнением производственной культуры, оптимизацией состава питательных сред, селекцией высокопродуктивных штаммов и др.).

В промышленном производстве лимонной кислоты в качестве продуцента в основном используют Aspergillus niger, но также применяют и A. wentii. Процесс ферментации достаточно сложен, так как лимонная кислота, является продуктом первичного метаболизма грибов, и даже незначительное выделение данного продукта в окружающую среду свидетельствует о выраженном дисбалансе клеточного метаболизма. Рост продуцента и синтез кислоты обычно регулируют составом среды (сахара, P, Mn, Fe, Zn). Сверхсинтез лимонной кислоты реализуется при больших концентрациях сахаров в среде (14–24 %) и является ответной реакцией продуцента на дефицит фосфора, а также других металлов, хотя их роль до конца не ясна. Это, видимо, и подавление анаболизма, и влияние на свойства поверхности и морфологию гиф. Оптимум рН на стадии кислотообразования составляет 1.7–2.0. В более щелочной среде процесс сдвигается в сторону накопления щавелевой и глюконовой кислот. В качестве основы среды обычно используют глюкозный сироп, гидролизаты крахмала или мелассу. Последнюю предварительно разбавляют до требуемого уровня сахаров и обрабатывают с целью снижения содержания металлов. Источником азота служат соли аммония (0.2 %); концентрация фосфатов (0.01–0.-2 %). В качестве пеногасителей используют природные масла с высоким содержанием жирных кислот. Очень существенное значение имеет уровень аэрации культуры.

В производстве лимонной кислоты применяют несколько вариантов процесса. Поверхностный способ реализуется на твердой сыпучей среде и в жидкой фазе. При жидкофазной поверхностной ферментации питательную среду разливают в кюветы слоем от 8 до 18 см. Кюветы размещают на стеллажах в предварительно простерилизованной парами формалина бродильной камере. Через специальные воздуховоды с током стерильного воздуха поверхность среды засевают исходной музейной культурой. В качестве посевного материала используют предварительно полученные также в условиях поверхностной культуры и высушенные споры (конидии) из расчета 50–75 мг конидий на 1 м2 площади кювет. Известно несколько вариантов процесса: бессменный, бессменный с доливами и метод пленок. При бессменном режиме процесс осуществляется на одной среде от момента засева спор до завершения стадии кислотообразования. При использовании метода пленок через 7 суток после завершения кислотообразования сброженный раствор мелассы сливают из кювет, мицелий промывают стерильной водой; и в кюветы заливают новую среду. Бессменный способ с доливом характеризуется дробными добавками мелассы под пленку гриба на стадии кислотообразования (30–35 % от исходного объема), так называемый режим с подпиткой субстратом. Это позволяет повысить выход лимонной кислоты на 15–20 % с единицы поверхности при сокращении затрат сахаров на 10–15 % по сравнению с другими методами. В ходе стадии ферментации на первом этапе (первые 24–36 ч) происходит интенсивный рост мицелия. Температура среды в этот период стабилизируется на уровне 32–34°C, интенсивность аэрации составляет 3–4 м3 воздуха в ч/м мицелия. В период активного кислотообразования подачу воздуха увеличивают в 5–6 раз. В результате более интенсивного термогенеза температуру снижают до 30–32°. По мере снижения процесса кислотообразования режим аэрации становится менее интенсивным. Контроль процесса ведут по показателям титруемой кислотности среды. Процесс считают завершенным при остаточной концентрации сахаров около 1–2 % и уровне титруемой кислотности 12–20 %. Содержание лимонной кислоты от уровня всех кислот достигает 94–98 %. Сброженный раствор сливают в сборник и направляют на обработку; промытый мицелий используют в кормопроизводстве.

Твердофазная ферментация имеет много общего с поверхностно-жидкофазным процессом. Разработанный в Японии процесс Коджи предусматривает использование в качестве среды пористого материла (багасса, картофель, пульпа сахарной свеклы, пшеничные отруби). Материал предварительно стерилизуют, после охлаждения инокулируют суспензией спор. Ферментация происходит в лотках при 25–30°C в течение 6–7 дней. Образованную лимонную кислоту экстрагируют водой. В Японии 20 % общего объема производства лимонной кислоты получают методом Коджи.

Начиная с 1950 г., промышленные процессы получения лимонной кислоты стали переводить в условия глубинной культуры. Стабильный процесс возможен при его организации в две стадии: рост мицелия на полной среде в ходе первой стадии и на второй (при отсутствии фосфора в среде) – образование лимонной кислоты. Глубинная ферментация проводится в аппаратах емкостью 50 м3 с заполнением на 70–75 %. В качестве посевного материала используют мицелий, подрощенный также в условиях глубинной культуры. В производственном аппарате, куда подрощенный мицелий передается по стерильной посевной линии, питательная среда содержит 12–15 % сахаров. Ферментацию проводят при 31–32° при непрерывном перемешивании. В ходе процесса кислотообразования (5–7 суток) реализуют интенсивный режим аэрации (до 800–1000 м3/ч) с дробным добавлением сахаров, 2–3 подкормки. Выход лимонной кислоты составляет от 5 до 12 %, остаточная концентрация сахаров – 0.2–1.5 %, доля цитрата – 80–98 % от суммы всех органических кислот.

В 60-е годы начали разрабатывать процессы получения лимонной кислоты на основе жидких углеводородов (С9–С30) с использованием в качестве продуцентов дрожжей (Candida) и бактерий (Brevibacterium, Corynebacterium, Arthrobacter), а также с применением метода проточных культур. Эти технологии, пока не реализованные в промышленных масштабах, обещают в будущем определенные технологические перспективы.

Готовый продукт – высокоочищенную кристаллическую лимонную кислоту получают в ходе постферментационной стадии. В сброженных растворах содержатся, помимо целевой кислоты, также глюконовая и щавелевая кислоты, остатки несброженных сахаров и минеральные соли. Для выделения лимонной кислоты из данного раствора ее связывают гидроокисью кальция с образованием труднорастворимого цитрата кальция:

2 С6Н8О7 + 3 Са(ОН)2 = Са36Н5О7)2 + 6 Н2О.

Одновременно образуются кальциевые соли глюконовой и щавелевой кислот, глюконат кальция Са(С6Н11О7)2 и оксалат кальция СаС2О4. Кальциевые соли лимонной и щавелевой кислот выпадают в осадок, а глюконат кальция и основная часть органических и минеральных компонентов мелассы остаются в растворе. Осадок отделяется на вакуум-фильтре, промывается и высушивается. Далее для перевода лимонной кислоты в свободное состояние и освобождения от оксалата кальция осадок обрабатывают серной кислотой с последующей фильтрацией. Раствор лимонной кислоты фильтруют, концентрируют вакуум-выпаркой и затем подвергают кристаллизации при медленном охлаждении до 8–10°. Полученные кристаллы отделяют в центрифуге от маточника и высушивают в пневматических сушилках при 30–35°. Готовый продукт содержит не менее 99.5 % лимонной кислоты (в пересчете на моногидрат), зольность – не выше 0.1– 0.35 %.


Дата добавления: 2015-07-15; просмотров: 418 | Нарушение авторских прав


Читайте в этой же книге: Периодическое культивирование микроорганизмов. | Вопрос. Типовая схема микробиологического синтеза. | Вопрос Стадия получения посевного материала. | Классификация питательных сред | В биотехнологическом производстве | Принципы составления питательных сред | Ферментация, устройство ферментера | Выделение целевого продукта | Производство биомассы | Технология получения глутаминовой кислоты. |
<== предыдущая страница | следующая страница ==>
Технология получения лизина.| Получение молочной кислоты.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)