Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Распределенная и параллельная обработка запросов

Читайте также:
  1. III. Обработка результатов измерений
  2. Антисептическая обработка
  3. Г) обработка полости рта
  4. ГОРЯЧАЯ ОБРАБОТКА МАТЕРИАЛОВ
  5. Группа 36 Поверхностная обработка с применением битума
  6. Диаграмма «Железо – цементит» и термическая обработка железоуглеродистых сплавов.
  7. ДОКОТЛОВАЯ ОБРАБОТКА ВОДЫ ДЛЯ ПИТАНИЯ ПАРОВЫХ КОТЛОВ

На этапе глобальной оптимизации для исходного фрагментного запроса генерируется оптимальный план выполнения. При этом принимаются решения относительно упорядочения операций, перемещений данных между узлами, выбора тех или иных локальных или распределенных алгоритмов выполнения операций. С этим шагом связан ряд серьезных проблем. К ним относятся ограничения, привносимые стоимостной моделью, выбор подмножества языка запросов, соотношение между затратами оптимизации и затратами выполнения.

Стоимостная модель – центральное звено глобальной оптимизации запросов, поскольку она предоставляет необходимую абстракцию среды выполнения распределенной СУБД в терминах методов доступа. Стоимостная модель используется для предсказания затрат на выполнение альтернативных планов запроса. Со стоимостными моделями зачастую связан ряд серьезных ограничений, которые снижают эффективность оптимизации, направленной на улучшение общей пропускной способности системы. Хотя языки запросов становятся все более развитыми (новые версии SQL), на стадии глобальной оптимизации применяется весьма ограниченное их подмножество, а именно, подмножество, позволяющее формулировать SPJ-запросы (select-project-join – селекция-проекция-соединение) с конъюнктивными предикатами. Это важный класс запросов, для которого существуют развитые методы оптимизации.

Существует естественная связь между затратами на оптимизацию и качеством результирующего плана выполнения. Высокие затраты на оптимизацию оправданы для регулярно выполняемых запросов, поскольку стоимость оптимизации окупается снижением затрат на выполнение и амортизируется многократностью выполнения. Однако нерационально тратить слишком много ресурсов на оптимизацию однократно выполняемых сиюминутных запросов. Большую часть затрат оптимизации составляет поиск в пространстве решений, представляющих альтернативные планы выполнения. Для распределенных систем характерны большие размеры пространства решений, поскольку число распределенных стратегий выполнения очень велико. Следовательно, важное значение здесь имеют исследования, направленные на выработку эффективных методов обхода пространства решений, исключающих его исчерпывающий перебор.

Глобальная оптимизация запросов производится заранее, до их выполнения, поэтому она называется статической. Основная проблема, возникающая в связи с этим, заключается в том, что модель стоимости, которая использовалась при оптимизации, со временем становится неточной, как из-за изменения размеров фрагментов, так и из-за реорганизаций базы данных, проводимых для балансировки нагрузки. Таким образом, задача состоит в том, чтобы определить оптимальные интервалы рекомпиляции/реоптимизации запросов с учетом соотношения затрат на их оптимизацию и выполнение.


Дата добавления: 2015-07-15; просмотров: 90 | Нарушение авторских прав


Читайте в этой же книге: Определение Дэйта. | Двухфазная блокировка | Типы РБД | Клиент-сервер | Журнал транзакций | Обработка и оптимизация запросов | Согласованность данных | C. Механизм распределенных информационных баз |
<== предыдущая страница | следующая страница ==>
Проблемы сетевой масштабируемости| Google BigTable

mybiblioteka.su - 2015-2024 год. (0.005 сек.)