Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Устройство триггера

Читайте также:
  1. Административно - территориальное устройство Украины
  2. БЕЗОПАСНОЕ СПУСКОВОЕ УСТРОЙСТВО (БСУ)
  3. БЛАГОУСТРОЙСТВО
  4. БЛАГОУСТРОЙСТВО
  5. Благоустройство города
  6. Благоустройство общественных парков и центров в сельской местности
  7. Благоустройство приусадебного участка

Принципы функционирования SRAM

Крис Касперски

История

История создания статической памяти уходит своими корнями в глубину веков. Память первых релейных компьютеров по своей природе была статической и долгое время не претерпевала практически никаких изменений (во всяком случае - концептуальных), - менялась лишь элементарная база: на смену реле пришли электронные лампы, впоследствии вытесненные сначала транзисторами, а затем TTL- и CMOS-микросхемами… но идея, лежащая в основе статической памяти, была и остается прежней…

Динамическая память, изобретенная, кстати, значительно позднее, в силу фундаментальных физических ограничений, так и не смогла сравняться со статической памятью в скорости.

В ядре

Ядро микросхемы статической оперативной памяти (SRAM - Static Random Access Memory) представляет собой совокупность триггеров - логических устройств, имеющих два устойчивых состояния, одно из которых условно соответствует логическому нулю, а другое - логической единице. Другими словами, каждый триггер хранит один бит информации, - ровно столько же, сколько и ячейка динамической памяти (см. статью "Устройство и принципы функционирования оперативной памяти. В ядре").

Между тем, триггер как минимум по двум позициям обыгрывает конденсатор: а) состояния триггера устойчивы и при наличии питания могут сохраняться бесконечно долго, в то время как конденсатор требует периодической регенерации; б) триггер, обладая мизерной инертностью, без проблем работает на частотах вплоть до нескольких ГГц, тогда как конденсаторы "сваливаются" уже на 75-100 МГц.

К недостаткам триггеров следует отнести их высокую стоимость и низкую плотность хранения информации. Если для создания ячейки динамической памяти достаточного всего одного транзистора и одного конденсатора, то ячейка статической памяти состоит как минимум из четырех, а в среднем шести - восьми транзисторов, поэтому мегабайт статической памяти оказывается по меньшей мере в несколько раз дороже.

Устройство триггера

В основе всех триггеров лежит кольцо из двух логических элементов "НЕ" (инверторов), соединенных по типу "защелки" (см. рис. 1). Рассмотрим, как он работает. Если подать на линию Q сигнал, соответствующий единице, то, пройдя сквозь элемент D.D1 он обратится в ноль. Но, поступив на вход следующего элемента, - D.D2 - этот ноль вновь превратится в единицу. Поскольку, выход элемента D.D2 подключен ко входу элемента D.D1, то даже после исчезновения сигнала с линии Q, он будет поддерживать себя самостоятельно, т.е. триггер перейдет в устойчивое состояние. Образно это можно уподобить дракону, кусающему себя за хвост.

Естественно, если на линию Q подать сигнал, соответствующий логическому нулю, - все будет происходить точно так же, но наоборот!

Рис. 1. Устройство простейшего триггера (слева). Образно это можно представить драконом, кусающим свой хвост

Устройство элемента "НЕ" (инвертора)

Как устроен элемент "НЕ"? На этот вопрос нельзя ответить однозначно. В зависимости от имеющейся у нас элементарной базы, конечная реализация варьируется в очень широких пределах. Ниже в качестве примера приведена принципиальная схема простейшего инвертора, сконструированного из двух последовательно соединенных комплементарых /* взаимно дополняемых */ CMOS-транзисторов - p- и n- канального (см. рис. 2). Если на затворы подается нулевой уровень, то открывается только p-канал, а n-канал остается разомкнутым. В результате, на выходе мы имеем питающее напряжение (т. е. высокий уровень). Напротив, если на затворы подается высокий уровень, размыкается n-канал, а p-канал - замыкается. Выход оказывается закорочен на массу и на нем устанавливается нулевое напряжение (т. е. низкий уровень).

Рис. 2. Устройство элемента НЕ (инвертора)


Дата добавления: 2015-07-15; просмотров: 57 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Распиновка панели приборов Газель Некст A21R23.3801010| Устройство матрицы статической памяти

mybiblioteka.su - 2015-2024 год. (0.005 сек.)