Читайте также: |
|
Answer
We introduce a fictitious work to properly display the data: Y (12;13), X (10;11), O1(0;1), O2(0;2).
We have duration and crash duration, so we should have expected time
texpected (i,j)=(3 tmin(i,j)+2 tmax(i,j))/5
Dispersion index is used to characterize the degree of dispersion of possible values around the expected level:
S2(i,j)=0,04(tmax(i,j)-tmin(i,j))2
texpected (0,1)=(3*0+2*0)/5=0
texpected(0,2)=(3*0+2*0)/5=0
texpected(1,3)=(3*2+2*2)/5=2.8
texpected(2,4)=(3*3+2*3)/5=4.2
texpected(3,5)=(3*3+2*3)/5=4.2
texpected(4,6)=(3*5+2*5)/5=6.6
texpected(5,7)=(3*2+2*2)/5=3.2
texpected(7,8)=(3*2+2*2)/5=2.8
texpected(8,9)=(3*2+2*2)/5=2.8
texpected(5,9)=(3*3+2*3)/5=4.2
texpected(9,10)=(3*2+2*2)/5=3.2
texpected(6,11)=(3*3+2*3)/5=3.8
texpected(10,11)=(3*0+2*0)/5=0
texpected(11,12)=(3*3+2*3)/5=4.2
texpected(12,13)=(3*0+2*0)/5=0
texpected(10,13)=(3*3+2*3)/5=4.6
texpected(13,14)=(3*1+2*1)/5=1.8
S2(0,1)=0.04(0-0)2=0
S2(0,2)=0.04(0-0)2=0
S2(1,3)=0.04(4-2)2=0.16
S2(2,4)=0.04(6-3)2=0.36
S2(3,5)=0.04(6-3)2=0.36
S2(4,6)=0.04(9-5)2=0.64
S2(5,7)=0.04(5-2)2=0.36
S2(7,8)=0.04(4-2)2=0.16
S2(8,9)=0.04(4-2)2=0.16
S2(5,9)=0.04(6-3)2=0.36
S2(9,10)=0.04(5-2)2=0.36
S2(6,11)=0.04(5-3)2=0.16
S2(10,11)=0.04(0-0)2=0
S2(11,12)=0.04(6-3)2=0.36
S2(12,13)=0.04(0-0)2=0
S2(10,13)=0.04(7-3)2=0.64
S2(13,14)=0.04(3-1)2=0.16
Activity (i,j) | tmin(i,j) | tmax(i,j) | m(i,j) | t expected (i,j) | S2(i,j) | |
01 | 0,1 | |||||
02 | 0,2 | |||||
A | 1,3 | 2.8 | 0.16 | |||
B | 2,4 | 4.2 | 0.36 | |||
C | 3,5 | 4.2 | 0.36 | |||
F | 4,6 | 6.6 | 0.64 | |||
D | 5,7 | 3.2 | 0.36 | |||
G | 7,8 | 2.8 | 0.16 | |||
I | 8,9 | 2.8 | 0.16 | |||
E | 5,9 | 4.2 | 0.36 | |||
J | 9,10 | 3.2 | 0.36 | |||
H | 6,11 | 3.8 | 0.16 | |||
X | 10,11 | |||||
L | 11,12 | 4.2 | 0.36 | |||
Y | 12,13 | |||||
K | 10,13 | 4.6 | 0.64 | |||
M | 13,14 | 1.8 | 0.16 |
event i | The early period of accomplishment events | te(i) |
Later date achievements events | tl(i) | |
Reserve time for an event | R(i) | |
Activity/work (i, j) | duration of work | t(i,j) |
Early start of work | teн(i,j) tes(i,j) | |
Early finish of work | tpo(i,j) | |
Late start of work | tпн(i,j) | |
Late finish of work | tпо(i,j) | |
Full-time working allowance | Rп(i,j) | |
the path L | duration of path | t(L) |
The duration of the critical path | tcr | |
Reserve time path | R(L) |
te(i) = max(t(Lni)) te(j) = max[te(i) + t(i,j)]
tl(i) = tcr - max(t(Lci)) tl(i) = min[t(j) - t(i,j)]
R(i) = tl(i) - te(i)
Critical events reserves do not have time, as any delay in the accomplishment of events, which lies on the critical path, cause the same delay in the accomplishment of the final event.
i=0 te(0)=0.
i=1: te(1) = te(0) + t(0,1) = 0 + 0 = 0.
i=2: te(2) = te(0) + t(0,2) = 0 + 0 = 0.
i=3: te(3) = te(1) + t(1,3) = 0 + 2.8 = 2.8.
i=4: te(4) = te(2) + t(2,4) = 0 + 4.2 = 4.2.
i=5: te(5) = te(3) + t(3,5) = 2.8 + 4.2 = 7.
i=6: te(6) = te(4) + t(4,6) = 4.2 + 6.6 = 10.8.
i=7: te(7) = te(5) + t(5,7) = 7 + 3.2 = 10.2.
i=8: te(8) = te(7) + t(7,8) = 10.2 + 2.8 = 13.
i=9: max(te(5) + t(5,9); te(8) + t(8,9)) = max(7 + 4.2;13 + 2.8) = 15.8.
i=10: te(10) = te(9) + t(9,10) = 15.8 + 3.2 = 19.
i=11: max(te(6) + t(6,11); te(10) + t(10,11)) = max(10.8 + 3.8;19 + 0) = 19.
i=12: te(12) = te(11) + t(11,12) = 19 + 4.2 = 23.2.
i=13: max(te(10) + t(10,13); te(12) + t(12,13)) = max(19 + 4.6;23.2 + 0) = 23.6.
i=14: te(14) = te(13) + t(13,14) = 23.6 + 1.8 = 25.4.
The length of the critical path is the early date of the final accomplishment of events 14: tkp=tp(14)=25.4
Table 1 - The calculation of provisions events
number of events | Terms accomplishments events: early te(i) | Terms accomplishments events: late tl(i) | R(i) |
4.8 | 4.8 | ||
2.8 | 2.8 | ||
4.2 | 4.8 | ||
10.8 | 15.6 | 4.8 | |
10.2 | 10.2 | ||
15.8 | 15.8 | ||
19.4 | 0.4 | ||
23.2 | 23.6 | 0.4 | |
23.6 | 23.6 | ||
25.4 | 25.4 |
Table 2 - Analysis of the network model with respect to time
Work (i,j) | Number of previous work | duration tij | ES early period: the start tije.s. | EF Early period: the end tije.e. | LS Later periods: the start tijl.s. | LF Later date: end tijl.e. | Reserves of time: full time reserve Rijf |
(0,1) | |||||||
(0,2) | 4.8 | 4.8 | 4.8 | ||||
(1,3) | 2.8 | 2.8 | 2.8 | ||||
(2,4) | 4.2 | 4.2 | 4.8 | 4.8 | |||
(3,5) | 4.2 | 2.8 | 2.8 | ||||
(4,6) | 6.6 | 4.2 | 10.8 | 15.6 | 4.8 | ||
(5,7) | 3.2 | 10.2 | 10.2 | ||||
(5,9) | 4.2 | 11.2 | 11.6 | 15.8 | 4.6 | ||
(6,11) | 3.8 | 10.8 | 14.6 | 15.6 | 19.4 | 4.8 | |
(7,8) | 2.8 | 10.2 | 10.2 | ||||
(8,9) | 2.8 | 15.8 | 15.8 | ||||
(9,10) | 3.2 | 15.8 | 15.8 | ||||
(10,11) | 19.4 | 19.4 | 0.4 | ||||
(10,13) | 4.6 | 23.6 | 23.6 | ||||
(11,12) | 4.2 | 23.2 | 19.4 | 23.6 | 0.4 | ||
(12,13) | 23.2 | 23.2 | 23.6 | 23.6 | 0.4 | ||
(13,14) | 1.8 | 23.6 | 25.4 | 23.6 | 25.4 |
critical path: (0,1)(1,3)(3,5)(5,7)(7,8)(8,9)(9,10)(10,13)(13,14) – O1, A, C, D, G, I, J, K, M
Дата добавления: 2015-07-18; просмотров: 75 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Меню Сервис-Поиск решения | | | not a critical path |