Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Первое знакомство с молекулярной биологией

Читайте также:
  1. Бесславное первое июня
  2. Близкое знакомство с Отцом Небесным
  3. Возбуждение производства по делам о банкротстве. Процедуры банкротства. Наблюдение. Первое собрание кредиторов и окончание наблюдения.
  4. Вопрос 1. Первое правило квалификации преступлений – это квалификация при неоконченной преступной деятельности.
  5. Второе внимание» принадлежит светящемуся телу так же, как «первое» — телу физическому.
  6. Глава 23. Последняя ночь. Первое утро
  7. Гранты 2015 г для обучения в аспирантуре Венского университета (Австрия) по биомолекулярной технологии белков

Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорга­низации различных типов. Одни из них приводят к уста­новлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации явля­ется существование каталитических эффектов.

В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах об­ратная связь (как установлено молекулярной биологи­ей), напротив, является скорее правилом, чем исключе­нием. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регу­ляции, обеспечивающего согласованность метаболиче­ской функции.

Нам бы хотелось подчеркнуть одно любопытное раз­личие. В примерах самоорганизации, известных из не­органической химии, молекулы, участвующие в реак­циях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова—Жаботинского уда­лось установить около тридцати различных промежуточ­ных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Об­разующие их молекулы — итог предшествующей эволю­ции; они были отобраны для участия в автокаталитиче­ских механизмах, призванных породить весьма специ­фические формы процессов организации.

Описание сложной сети метаболической активности и торможения является существенным шагом в понима­нии функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех хими­ческих реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.

Основной механизм, с помощью которого молекуляр­ная биология объясняет передачу и переработку генети­ческой информации, по существу, является петлей об­ратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе кото­рых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтези­рованных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитиче­ский механизм репликации ДНК, позволяющий копиро­вать генетическую информацию с такой же скоростью, с какой размножаются клетки.

Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процес­сов, происходящих на молекулярном уровне в биологи­ческих системах, требует взаимно дополняющего разви­тия физики и биологии, первой — в направлении слож­ного, второй — простого.

Фактически уже сейчас физика имеет дело с иссле­дованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молеку­лярная биология добилась больших успехов в установ­лении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество са­мых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метабо­лических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитиче­ской функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопиче­ском уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.

В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с од­ной стороны, они являются вместилищем многочислен­ных химических превращений, с другой — демонстри­руют великолепную пространственно-временную органи­зацию с весьма неравномерным распределением биохи­мического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследо­вавшиеся в последние годы.

Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщепле­нии каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.

В ходе биохимических экспериментов были обнару­жены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти ко­лебания определяются ключевой стадией в цепи реак­ций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо при­способленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергети­ческих резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энер­гетические запасы, в то время как накопление АТФ оз­начает, что расщепление глюкозы может происходить в более медленном темпе.

Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порож­дать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энерге­тических процессов в клетке, зависящих от концентрации АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.

Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции проте­кают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные резуль­таты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химиче­ским часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.

С точки зрения термодинамики живая система отли­чается необычайной сложностью. Одни реакции проте­кают в слабо неравновесных условиях, другие — в силь­но неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энер­гии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобож­дающей часть накопленной в ней энергии.

Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.

Когда запас питательных веществ в той среде, в ко­торой живут и размножаются коллективные амебы, ис­сякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, на­считывающую несколько десятков тысяч клеток. Обра­зовавшийся «псевдоплазмодий» претерпевает дифферен­циацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», напол­ненную спорами, которые отделяются и распространя­ются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размно­жаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окру­жающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресур­сы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.

Исследование первой стадии образования колонии показало, что она начинается с волн перемещения отдельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспе­риментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентра­ции ключевого вещества — циклической АМФ, периоди­чески испускаемого сначала амебой, ставшей центром притяжения, а затем — после срабатывания механизма задержки — и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по сущест­ву, являются новым средством связи. В случае коллек­тивных амеб механизм самоорганизации приводит к установлению связи между клетками.

Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», ис­пускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для ос­тальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.


Дата добавления: 2015-07-15; просмотров: 103 | Нарушение авторских прав


Читайте в этой же книге: Тепло — соперник гравитации | Принцип сохранения энергии | Тепловые машины и стрела времени | От технологии к космологии | Рождение энтропии | Принцип порядка Больцмана | Карно и Дарвин | Поток и сила | Линейная термодинамика | Вдали от равновесия |
<== предыдущая страница | следующая страница ==>
За порогом химической неустойчивости| Бифуркации и нарушение симметрии

mybiblioteka.su - 2015-2024 год. (0.008 сек.)