Читайте также:
|
|
Из этого уравнения определим переменную функцию С1(х):
Интегрируя, получаем:
Подставляя это значение в исходное уравнение, получаем:
.
Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.
При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.
Пример. Решить уравнение
Сначала приведем данное уравнение к стандартному виду:
Применим полученную выше формулу: . Тогда
или
откуда
Уравнение Бернулли
Уравнением Бернулли называется уравнение вида
(8.8)
где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.
Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.
Для этого разделим исходное уравнение на yn.
Применим подстановку, учтя, что .
или
Т.е. получено линейное уравнение относительно неизвестной функции z.
Решение этого уравнения будем искать в виде:
Пример. Решить уравнение
Разделим уравнение на xy2:
Полагаем .
Полагая , найдём
.
Произведя обратную подстановку, получаем:
Пример. Решить уравнение
Разделим обе части уравнения на
Полагаем
.
Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:
Полагаем C = C(x) и подставляем полученный результат в линейное неодно-родное уравнение, с учетом того, что:
Получаем:
Применяя обратную подстановку, находим окончательный ответ:
.
Дата добавления: 2015-07-14; просмотров: 66 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Линейные уравнения | | | Дифференциальные уравнения второго порядка |