Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Подставляем полученное соотношение в исходное уравнение

Читайте также:
  1. I. Дифференциальное уравнение вида
  2. II этап – знакомство с уравнением и овладение способом его решения.
  3. II. Дифференциальное уравнение вида
  4. II. Соотношение — вначале самопроизвольное, затем систематическое — между положительным мышлением и всеобщим здравым смыслом
  5. Виды рейсов и их характеристика. Уравнение времени рейса
  6. Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  7. Вопрос 95. Правоспособность граждан. Соотношение правоспособности и субъективных гражданских прав

 

Из этого уравнения определим переменную функцию С1(х):

Интегрируя, получаем:

Подставляя это значение в исходное уравнение, получаем:

.

Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.

При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

Пример. Решить уравнение

Сначала приведем данное уравнение к стандартному виду:

Применим полученную выше формулу: . Тогда

или

откуда

 

Уравнение Бернулли

 

Уравнением Бернулли называется уравнение вида

(8.8)

где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.

Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.

Для этого разделим исходное уравнение на yn.

Применим подстановку, учтя, что .

или

Т.е. получено линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде:

Пример. Решить уравнение

 

Разделим уравнение на xy2:

Полагаем .

Полагая , найдём

.

Произведя обратную подстановку, получаем:

Пример. Решить уравнение

Разделим обе части уравнения на

Полагаем

.

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

Полагаем C = C(x) и подставляем полученный результат в линейное неодно-родное уравнение, с учетом того, что:

Получаем:

Применяя обратную подстановку, находим окончательный ответ:

.


Дата добавления: 2015-07-14; просмотров: 66 | Нарушение авторских прав


Читайте в этой же книге: Примеры. | Дифференциальные уравнения первого порядка. | Однородные уравнение первого порядка | Уравнения, допускающие понижение порядка | Линейные однородные ДУ второго порядка | С постоянными коэффициентами | Линейные неоднородные дифференциальные уравнения второго | Метод вариации произвольных постоянных | ЛНДУ второго порядка с постоянными коэффициентами | Символьное (аналитическое) решение ОДУ |
<== предыдущая страница | следующая страница ==>
Линейные уравнения| Дифференциальные уравнения второго порядка

mybiblioteka.su - 2015-2024 год. (0.007 сек.)