Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Фактура. Нанесение узора на поверхность

Читайте также:
  1. Б) Деление потока свежего газа на две части, одна из которых насыщается паром анестетика, контактируя с его поверхностью.
  2. ГЕОМЕТРИЧЕСКИЙ АНАЛИЗ ГЕОХИМИЧЕСКОГО ПОЛЯ И ТОПОГРАФИЧЕСКАЯ ПОВЕРХНОСТЬ
  3. Горизонтальная горная выработка, не имеющая непосредственного выхода на земную поверхность и проводимая по простиранию пласта.
  4. Давление под искривленной поверхностью жидкости
  5. Ладони – внутренняя поверхность рук – грудь.
  6. На горизонтальную поверхность
  7. Нанесение фольги на головку бутылки

 

В машинной графике фактурой называется детализация строения поверхности. Существует 2 вида детализации:

1. Нанесение заданного узора на гладкую поверхность (регулярная и стохастическая текстуры).

2. Создание неровностей на поверхности.

Нанесение узора на поверхность.

· Регулярная текстура.

Характерные точки узора из пространства текстуры переносятся в объектное пространство, затем в пространство изображения и определенным образом соединяются отрезками. Главным при этом является отображение, поэтому задача сводится к преобразованию систем координат.

Пусть рисунок узора задан в прямоугольной системе координат (u,w), а поверхность – в другой прямоугольной системе координат (x,y), то для нанесения узора на поверхность надо найти или задать функцию отображения одного пространства на другое:

,

или , .

 

Обычно предполагается, что функция отображения линейна:

,

где коэффициенты A, B, C, D выводятся из соотношения между двумя известными точками в системах координат.

Пример.

 

Узор на рис. а) надо отобразить на кусок поверхности, заданный октантом сферы.

 

Параметрическое представление октанта сферы:

 

Пусть функция отображения линейна и имеет вид:

, .

 

Углы узора переходят в углы октанта с.о.:

, при ,

, при ,

, при ,

, при ,

 

Отсюда , , , .

 

Функция отображения: ,

или обратное преобразование: , .

В таблице приведено отображение одной линии узора из пространства (u-w) в пространство , а затем в декартовы координаты (x,y,z).

 

· Стохастическая текстура.

Метод обратного трассирования лучей. Центр каждого изображения проецируется на поверхность объекта и по координатам т. на поверхности определяется соответствующая ей т. в пространстве фактурном. Далее используются процедуры сглаживания для устранения дискретизации.

Рассмотренный узор был задан математически, но он м.б. также нарисован от руки или получен путем сканирования фотографий. Для нанесения рис. на поверхность необходимо:

- отображение объектного пространства (ОП) в пространство изображения (ПИ);

- преобразование из фактурного пространства (ФП) в ОП.

Рассмотрим алгоритм разбиения Кэтмула:

1) Кусок поверхности разбивается на фрагменты до тех пор, пока фрагмент не будет покрывать центр только одного .

2) Производится отображение параметрических значений центра фрагмента или в ФП.

3) Находится интенсивность по узору.

 

Пример. (Исходные данные те же)

Узор задан на растре .

Кусок поверхности разбиваем на фрагменты. Для того, чтобы фрагмент покрывал центр только одного , надо 4 разбиения. В ПИ этот фрагмент имеет прямоугольную форму. Пределы изменения и в ОП:

С помощью функции обратного отображения из ОП в ФП :

, .

Получим координаты углов фрагмента в ФП:

, ,

, ,

, ,

, ,

В ФП – это квадрат. На растре 64 64 часть1/16 соответствует 4 . Интенсивность в ПИ определяется путем усреднения интенсивностей в соответствующей части ФП. Кусок фрагмента 4 4 содержит 7 черных , поэтому в ПИ интенсивность .

 


Дата добавления: 2015-07-14; просмотров: 131 | Нарушение авторских прав


Читайте в этой же книге: Композиции преобразований | Алгоритм Брезенхема | Лестничный эффект | Алгоритм Ву | Заполнение области. Алгоритм построчного сканирования, алгоритм заполнения с затравкой. Заполнение линиями. | Когерентность сканирующих строк | Основные виды геометрических моделей. | Методы построения геометрических моделей (построение кривых и поверхностей, кусочно-аналитическое описание, кинематический принцип, булевы операции, полигональные сетки). | Получение проекций. Основные виды проекций. | Алгоритм, использующий z-буфер |
<== предыдущая страница | следующая страница ==>
Методы закраски полигональной сетки.| Фактура. Создание неровностей на поверхности.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)