Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Условия параллельной работы трансформаторов.

Читайте также:
  1. Excel. Технология работы с формулами на примере обработки экзаменационной ведомости
  2. I. Задания для самостоятельной работы
  3. II. Время начала и окончания работы
  4. II. Выполнение дипломной работы
  5. II. ЗАДАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
  6. II. Определение для каждого процесса изменения внутренней энергии, температуры, энтальпии, энтропии, а также работы процесса и количества теплоты, участвующей в процессе.
  7. II. Требования к условиям хранения, приготовления и реализации пищевых продуктов и кулинарных изделий

Под параллельной работой этих устройств понимают их совместную работу на шины, к которым подключен потребитель. Питание по высокой стороне, трансформаторы могут получать от разных источников, однако, общность режима работы заключается в питании секций шин имеющих электрическую связь.

Ниже приведены несколько основных условий, соблюдением которых достигается нормальная работа электрооборудования: Первое и пожалуй, наиболее важное - это соответствие фазировки двух трансформаторов. При несоблюдении этого условия, и включении их на одни шины произойдет междуфазное короткое замыкание. Фазировка высоковольтного оборудования выполняется довольно легко, по цепям вторичного напряжения, снимаемым с обмоток трансформаторов напряжения. Вторым непременным условием параллельной работы этих электрических машин, является равенство первичных и вторичных напряжений. Тут все предельно понятно: нельзя включить трансформатор на напряжение, которое не соответствует его классу изоляции. Из этого же условия вытекает равенство коэффициентов трансформации (согласно Правил Технической Эксплуатации Электроустановок Потребителей (ПТЭЭП), разница между ними должна быть в диапазоне ±0,5%). Так как коэффициент трансформации это отношение вторичного напряжения к первичному, а они у нас равны, то и сам коэффициент одинаков. Третьим условием является равенство напряжений короткого замыкания. Термин напряжение короткого замыкания характеризует потери в обмотках трансформатора. Чем выше Uкз, тем больше сопротивление обмотки. Соответственно, трансформатор, имеющий меньшее Uкз, будет “брать” на себя больше нагрузку и работать с постоянным перегрузом. Максимальное допустимое различие этих показателей, также регламентированное ПТЭЭП - не более 10%. Четвертое условие – одинаковые группы соединения обмоток. Его невыполнение приведет к появлению уравнительных токов, так как фазы будут сдвинуты на определенный угол. Соотношение мощностей, параллельно подключаемых трансформаторов, должно различаться не более чем в три раза. В противном случае, менее мощный трансформатор будет работать с перегрузом. Соблюдение перечисленных выше основных условий позволит работать оборудованию в номинальном режиме, что повысит уровень надежности электроснабжения потребителя.

18.Схема замещения трансформатора. В электрических цепях обмотки трансформаторов связаны между собой магнитным полем. Это усложняет расчет цепи и анализ ее работы. Поэтому целесообразно заменить трансформатор его моделью, которая называется схемой замещения. Построение схемы замещения должно удовлетворять требованиям, предъявляемым к моделям, т. е. математическое описание режима схемы замещения должно совпадать с математическим описанием электрического состояния трансформатора.

//Схема замещения для приведенного трансформатора. Приведенный трансформатор математически описывается уравнениями электрического состояния (2.8), (2.10) и уравнением токов (2.6б). В соответствии с этими уравнениями построена схема замещения трансформатора (рис. 2.9). На схеме и соответственно — активное сопротивление и сопротивление рассеяния первичной обмотки; и — приведенные активное сопротивление и сопротивление рассеяния вторичной обмотки; и активное и реактивное сопротивление ветви холостого хода. Мощность потерь в сопротивлении при токе эквивалентна потерям в магнитопроводе, т.е. – эквивалентное реактивное сопротивление. Падение напряжения на ветви холостого хода с комплексным сопротивлением при токе равно ЭДС и трансформатора.

Упрощенная схема замещения.

Параметры схемы замещения трансформатора экспериментально найти трудно. Если пренебречь током холостого хода из-за его малости, то получим так называемую упрощенную схему замещения (рис. 2.10), где и называются сопротивлениями короткого замыкания и (2.11)//

При определении параметров трёхфазного трансформатора и построении векторных диаграмм расчёт ведётся на одну фазу.

//Определение параметров схемы замещения трансформатора в режиме холостого хода. Для определения параметров схемы замещения трансформатора необходимо рассчитать: а) номинальный ток первичной обмотки трансформатора; б) фазный ток первичной обмотки трансформатора; в) фазное напряжение первичной обмотки; г) фазный ток холостого хода трансформатора; д) мощность потерь холостого хода на фазу; е) полное сопротивление ветви намагничивания схемы замещения трансформатора при холостом ходе; ж) активное сопротивление ветви намагничивания; з) реактивное сопротивление цепи намагничивания; и) фазный коэффициент трансформации трансформатора; к) линейный коэффициент трансформации трансформатора.

//По характеру решаемых задач расчеты электрических сетей делятся на две части:

1. Расчеты режимов сетей. Это расчеты напряжений в узловых точках, токов и мощностей в линиях и трансформаторах в определенные промежутки времени.

2. Расчеты выбора параметров. Это расчеты выбора напряжений, параметров линий, трансформаторов, компенсирующих и других устройств.

Для производства выше указанных расчетов, прежде всего, необходимо знать схемы замещения, сопротивления и проводимости линий электропередачи и трансформаторов. В расчетах электрических сетей с учетом трансформаторов взамен Т-образной схемы замещения (Т - образная схема замещения трансформатора имеет вид Такая схема применяется для развязки индуктивных связей)

, обычно применяют наиболее простую Г-образную схему замещения, которая значительно упрощает расчеты и не вызывает существенных ошибок. Такая схема замещения представлена на рис. 1.

Рис. 1. Г-образная схема замещения трансформатора

Основными параметрами схемы замещения одной фазы трансформатора является активное сопротивление RТ, реактивное сопротивление ХТ, активная проводимость GТ и реактивная проводимость ВТ. Реактивная проводимость ВТ имеет индуктивный характер. Эти параметры в справочной литературе отсутствуют. Их определяют экспериментально по паспортным данным: потерям холостого хода ∆РХ, потерям короткого замыкания DРК, напряжению короткого замыкания UК% и току холостого хода i0%.

Для трехобмоточных трансформаторов или автотрансформаторов, схема замещения представляется в несколько ином виде (рис.2). (Рис. 2. Схема замещения трехобмоточного трансформатора)

В паспортных данных трехобмоточных трансформаторов напряжение короткого замыкания указывается для трех возможных сочетаний: UК1-2% - при коротком замыкании обмотки среднего напряжения (СН) и питании со стороны обмотки высшего напряжения (ВН); UК1-3% - при коротком замыкании обмотки низшего напряжения (НН) и питания со стороны обмотки ВН; UК2-3% - при коротком замыкании обмотки НН и питании со стороны СН.

Кроме того, возможны варианты исполнений трансформаторов, когда все три обмотки рассчитаны на номинальную мощность трансформатора или когда одна или обе вторичные обмотки рассчитаны (по нагреву) только на 67% мощности первичной обмотки.

 

 

19. Классификация машин постоянного тока по способу возбуждения. Принцип действия электродвигателей постоянного тока. Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток. Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения. Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя, преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников. Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

 

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У генератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря Iя равен сумме токов нагрузки Iп и тока возбуждения Iв: Iя = Iп + Iв.Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС(магнито-движущая сила) последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением. У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря Iя и тока возбуждения Iв.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС. главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. В основе принципа работы любого современного электродвигателя постоянного тока лежит принцип магнитной индукции, а также «Правило левой руки». В том случае, если по верхней части обмотки якоря пропустить ток в одном направлении, а по нижней в другом, то он начнет вращаться. Это обусловлено тем, что по правилу левой руки, проводники, которые уложены непосредственно в пазах якоря, будут выталкиваться из магнитного поля, которое создается станиной. Таким образом, верхняя часть будет выталкиваться влево, а нижняя – вправо, что приведет к вращению самого якоря, поскольку вся энергия от проводников будет передаваться и ему. Однако, в тот момент, когда проводники провернутся и части якоря поменяются местами расположения, его вращение остановится. Чтобы этого не случилось, в электродвигателе применяется коллектор, предназначенный для коммутирования обмотки якоря. Машина постоянного тока обладает свойством обратимости и может работать как в качестве генератора, так и в качестве электродвигателя. Поэтому генераторы и электродвигатели имеют в принципе одинаковую конструкцию.

20.Пуск, реверс и регулирование скорости вращения якоря электродвигателя постоянного тока. При подаче напряжения на электродвигатель происходит скачок напряжения, который называется пусковым током. Пусковой ток часто выше номинального от 5 до 10 раз, но отличается своей кратковременностью.Чтобы избежать поломки электродвигателя, сразу после начала его работы пусковой ток понижается до номинальных частот вращения. Для снижения пускового тока применяют несколько способов, которые также позволяют стабилизировать напряжение электропитания. Существует несколько способов запуска двигателей постоянного тока. Пуск:1) Прямой пуск-осуществляется непосредственно включением двигателя на полное напряжение сети при отсутствии добавочных элементов в цепях якоря и возбуждения. Преимуществами этого способа являются его простота и отсутствие дополнительной пусковой аппаратуры, недостатком — большой ток в цепи якоря в первоначальный момент пуска, что вызывает искрение на коллекторе, возникновение значительного момента на валу двигателя и колебания напряжения в сети. Двигатели мощностью до 1 кВт допускают прямой пуск. 2) Реостатный пуск.В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. и напряжение в якоре равна нулю, поэтому Iп = U / Rя. Сопротивление цепи якоря невелико, поэтому пусковой ток превышает в 10 - 20 раз и более номинальный. Это может вызвать значительные электродинамические усилия в обмотке якоря и чрезмерный ее перегрев, поэтому пуск двигателя производят с помощью пусковых реостатов - активных сопротивлений, включаемых в цепь якоря.Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя. В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение. 3) Пуск при пониженном напряжении. При использовании реостатного пуска могут возникнуть большие потери энергии непосредственно в самом пусковом реостате. Для того чтобы избежать этих потерь и повысить экономичность и энергоэффективность, двигатель запускается с помощью очень плавного постепенного повышения напряжения, которое подается на обмотку якоря. Для такого способа требуется отдельный источник постоянного тока, с помощью которого можно регулировать напряжение. Для этого используют генераторы и управляемые выпрямители. Пуск путем изменения питающего напряжения двигателя является обычной практикой на тепловозах. Реверс — изменение направления вращения на противоположное. Для реверсирования необходимо изменить направление вращающего момента М = СмФIя, что возможно осуществить изменением направления тока в якоре электродвигателя или изменением направления магнитного потока путем изменения направления тока в обмотках возбуждения. Для двигателей с независимым и параллельным возбуждением предпочтительнее первый способ по сравнению со вторым по сле-дующим причинам:во-первых, при размыкании обмотки возбуждения, предшествующем ее переключению, возникает значительная э. д. с. самоиндукции затрудняющая процесс коммутации и увеличивающая вероятность пробоя изоляции; во-вторых, при реверсировании двигатель сначала необходимо остановить, а затем он начинает вращаться в обратную сторону. Но уменьшение магнитного потока вызовет не уменьшение, а увеличение частоты вращения. Для двигателей со смешанным возбуждением реверсирование изменением направления магнитного потока еще более затруднено по сравнению с двигателем с параллельным возбуждением, так как у него необходимо переключать две обмотки возбуждения. Для двигателей с последовательным возбуждением оба способа равноценны. Регулирование частоты вращения электродвигателя постоянного тока

Частота вращения двигателя постоянного тока: где U — напряжение питающей сети; Iя — ток якоря; Rя — сопротивление цепн якоря; kc — коэффициент, характеризующий магнитную систему; Ф — магнитный поток электродвигателя.

Из формулы видно, что частоту вращения электродвигателя постоянного тока можно регулировать тремя путями: изменением потока возбуждения электродвигателя, изменением подводимого к электродвигателю напряжения и изменением сопротивления в цепи якоря.

Наиболее широкое применение получили первые два способа регулирования, третий способ применяют редко: он неэкономичен, скорость двигателя при этом значительно зависит от колебаний нагрузки.

21. Механические характеристики электродвигателя постоянного тока при различных способах регулирования частоты вращения.

Жирная прямая — это естественная зависимость скорости от момента на валу, или, что то же, от тока якоря. Прямая естественной механической характеристики несколько отклоняется от горизонтальном штриховой линии. Это отклонение называют нестабильностью, нежесткостью, иногда статизмом. Группа непаралельных прямых I соответствует регулированию скорости возбуждением,(При ослаблении магнитного потока механические характеристики располагаются выше естественной (т. е. выше характеристики при отсутствии реостата)) параллельные прямые II получаются в результате изменения напряжения якоря, наконец, веер III — это результат введения в цепь якоря активного сопротивления.

 

 


Дата добавления: 2015-07-14; просмотров: 270 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Способы пуска синхронного электродвигателя.| Место дисциплины в структуре ООП

mybiblioteka.su - 2015-2024 год. (0.01 сек.)