Читайте также:
|
|
n – число наблюдений тестируемой модели
k – число факторов/показателей/регрессоров
R^2 – коэффициент детерминации – оценка адекватности, качества подгонки модели, R^2 = 1-ESS/RSS=RSS/TSS
R^2adj – нормированный коэффициент детерминации, R^2adj=1-(1-R^2)*((n-1)/(n-k-1))
alpha – уровень значимости (=0,05), вероятность совершения ошибки первого рода, вероятность отвергнуть правильную нулевую гипотезу
выброс – наблюдение, которое отклоняется от выборочного среднего более, чем на 2 или 3 величины стандартного отклонения
Гетероскедастичность – непостоянство дисперсии объясняемой переменной, случайных ошибок
Гомоскедастичность – независимость дисперсии случайных возмущений от номера наблюденя
Диаграмма рассеяния – математическая диаграмма, изображающая значения переменных в виде точек на декартовой плоскости
Дисперсия – мера отклонения наблюдаемого значения переменной от ее среднего значения
Тренд – основная тенденция изменения ряда
Нулевая гипотеза – гипотеза, которая проверяется на согласованность с имеющимися эмпирическими данными; проверяемое предположение
Альтернативная гипотеза – гипотеза, противоречащая нулевой
Тест на мультиколлинеарность Фаррара-Глобера:
dfFG – число степеней свободы для теста на мультиколлинеарность Фаррара-Глобера [0,5*k*(k-1)]
det_R – определитель матрицы корреляции (вычисляется в Exсel при помощи функции «МОПРЕД»)
Ln(det_R) – натуральный логарифм определителя матрицы корреляции
FGнабл – наблюдаемое значение статистики Фаррара-Глобера
FGкрит – критическое значение Хи-квадрат распределения при уровне значимости alfa и со степенью свободы dfFG
Тест на «Длинную-Короткую модель »:
q- отбрасываемое число факторов
dfLS_1 (dfLS_2) – число степеней свободы dfLF_1=q, dfLS_2=n-k-1
ESS_R - сумма квадратов остатков короткой модели
ESS_UR – сумма квадратов остатков длинной модели
FLSнабл – наблюдаемое значение Фишера для теста на длинную-короткую модель (=((ESS_R-ESS_UR)/q)/(ESS_UR/(n-k-1))
FLSкрит – критическое значение Фишера для теста на "длинную-короткую" модель (0,05;dfLS_1;dfLS_2)
Тест Чоу:
n 1 – число наблюдений в первой подгруппе
n 2 – число наблюдений во второй подгруппе
dfCH_1(dfCH_2) – число степеней свободы для теста на однородность Чоу
FCHнабл - наблюдаемое значение статистики Фишера для теста на однородность данных (=(ESS_R-ESS_UR)/dfCH1/(ESS_UR/dfCH2))
FCHкрит - критическое значение Фишера для теста на однородность данных (=FРАСПОБР(alfa;dfLS_1;dfLS_2))
Тестына гетероскедастичность:
1. Гольдфельда-Куандта:
D - число отбрасываемых наблюдений, d=n/4
nGQ - число наблюдений в каждой подгруппе ((n-d)/2)
dfGQ - число степеней свободы для теста GQ [ ((n-d)/2)-k-1 ]
ESS_1(ESS_2) - остаточная сумма квадратов из 1-й(2-й) подгруппы наблюдений
ESS_max(min) – максимальное(минимальное) значение ESS из каждой подгруппы наблюдений
GQнабл - наблюдаемое значение статистики для теста на гетероскедастичность (ESS_max/ESS_min)
GQкрит - критическое значение Гольдфельда-Куандта для теста на гетероскедастичность (FРАСПОБР (alfa;dfGQ;dfGQ))
2. Бреуша-Пагана:
dfBP - число степеней свободы, число подозреваемых
RSS_BP_2 - объясненная сумма квадратов для второй регрессии теста ВР
BPнабл - наблюдаемое значение статистики для теста не гетероскедастичность Бреуша_Пагана (==RSS_BP_2/2)
BPкрит - критическое значение Пирсона для теста на гетероскедастичность Бреуша-Пагана (=ХИ2ОБР(alfa; dfBP))
3. Тест Уайта:
Значимость-F - значимость из 2-й регрессии Уайта
e(i) – «остатки» (отклонение наблюдаемого значения зависимой переменной от ее расчетного, e(i) = Y – Y^)
Тест на автокорреляцию остатков:
1. Тест Дарбина-Уотсона:
dL - нижняя граница наблюдения DW (берется из табл.Дарбина-Уотсона)
dU - верхняя граница наблюдения DW (берется из табл.Дарбина-Уотсона)
ESS_shift – остаточная сумма квадратов из регрессии остатков от предыдущих остатков
DWнабл - наблюдаемое значение статистики для теста DW, DWнабл=ESSshift/ESS
Дата добавления: 2015-07-12; просмотров: 97 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ЭЛЕКТРОУСТАНОВОК | | | Тест Чоу на однородность данных |