Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Технология пиросеквенирования

Читайте также:
  1. Excel. Технология работы с формулами на примере обработки экзаменационной ведомости
  2. II. Информационная технология управления.
  3. V. Технология поставки продуктов.
  4. Актерское искусство и технология выразительных средств жанра
  5. Асқын өткізгіш материалдарын алудың бар технологиялары
  6. Базовые понятия и технология оценки.
  7. БИОТЕХНОЛОГИЯ. КЛЕТОЧНАЯ И ГЕННАЯ ИНЖЕНЕРИЯ.

 

Пиросеквенирование — это метод секвенирования ДНК (определение последовательности нуклеотидов в молекуле ДНК), основанный на принципе «секвенирование путем синтеза». При включении нуклеотида происходит детекция высвобождающихсяпирофосфатов.[1] Технология была разработана Полом Ниреном (Pål Nyrén) и его студентом Мустафой Ронаги, в Королевском Техническом Институте (Стокгольм) в 1996 году.[2][3][4]

Процедура

«Секвенирование путем синтеза» заключается в том, что для секвенирования одноцепочечной ДНК ферментативно синтезируюткомплементарную цепочку. Метод пиросеквенирования основан на детекции активности фермента ДНК-полимеразы с другим хемилюминесцентным ферментом. Метод позволяет секвенировать одну цепочку нуклеотидов ДНК путем синтеза комплементарной цепочки, при этом регистрируется присоединение каждого нуклеотида. Матрица ДНК иммобилизована, растворы нуклеотидов A, C, G и T добавляются и отмываются последовательно после реакции. Свет образуется в тот момент, когда раствор нуклеотидов соответствует первому неспаренному основанию матрицы. Последовательность растворов, которые дают хемилюминесцентный сигнал, позволяет определить последовательность матрицы.

Матрица одноцепочечной ДНК гибридизуется с праймером и инкубируется с ферментами ДНК-полимеразой, АТФ-сульфурилазой, люциферазой и апиразой, а также с субстратами аденозин-5´-фосфосульфатами (APS) и люциферином.

1. Добавление одного из четырёх дезоксинуклеозидтрифосфатов (dNTP)(в случае dATP добавляют dATPαS, который не является субстратом для люциферазы) инициирует следующий этап. ДНК-полимераза включает правильный комплементарный дезоксинуклеотид в цепочку. При этом стехиометрически высвобождается пирофосфат (PPi).

2. Фермент АТФ-сульфурилаза количественно превращает PPi в аденозинтрифосфат (АТФ) в присутствии аденозин-5´-фосфосульфата. АТФ выступает «топливом» для фермента люциферазы, которая превращает люциферин в оксилюциферин, при этом высвобождается видимый свет, интенсивность которого пропорциональна количеству образовавшегося АТФ. Свет образуется в реакции, катализируемой люциферазой, регистрируется камерой и далее анализируется специальной компьютерной программой.

3. Невключённые нуклеотиды и АТФ подвергаются деградации ферментом апиразой, и реакция начинается с новым нуклеотидом.

В настоящий момент существуют некоторые ограничения в применения данного способа секвенирования. Лимитирующим фактором является длина последовательности нуклеотидов, которая составляет около 300—500 нуклеотидов, что короче, чем 800—1000 нуклеотидов, достижимые методом обрыва цепи (например, метод Сэнгера). Такие ограничения могут затруднять секвенирование геномов, в частности, богатых повторенными последовательностями нуклеотидов. К2007 году, пиросеквенирование обычно использовали для повторного секвенирования или секвенирования геномов, для которых известна последовательность нуклеотидов родственного вида.

Принцип метода довольно прост и основан на (+/-)-секвенировании, предложенном ещё в 60-х годах. При последовательном добавлении к ДНК-полимеразному комплексу дезоксинуклеозидтрифосфатов их включение в синтезируемую нить зависит от нуклеотидной последовательности матрицы. Полимеразный синтез ДНК сопровождается выделением пирофосфата. Этот пирофосфат в присутствии сульфурилазы и аденозинфосфосульфата преобразуется в АТФ и запускает окисление люциферина люциферазой, сопровождающееся биолюминесценцией (рис. 2). Люминесценция регистрируется фотоумножителем или цифровой камерой.

 

 

Рис. 2 Система реакций пиросеквенирования

 

Приборное оснащение, необходимое для проведения пиросеквенирования, на первых порах не отличалось особой сложностью. В первоначальном варианте, описанном Hyman, предлагалось использовать проточный капилляр, содержащий несколько иммобилизованных ферментов и анализируемую ДНК [3]. Корпорация "Biotage AB" (Швеция) предлагает приборы для работы с 96-луночными планшетами. Реагенты вводятся в лунки головкой струйного принтера, после чего не удаляются, а расщепляются специальным ферментом — апиразой.

Существенной особенностью более сложной технологии, разработанной компанией "454 Life Sciences", является использование эмульсионной ПЦР для одновременной параллельной подготовки сотен тысяч препаратов ДНК к секвенированию. Такая пробоподготовка состоит из следующих этапов:

ультразвуковая фрагментация (небулизация) анализируемой ДНК;

пришивка адапторов и денатурация ДНК;

получение эмульсии, содержащей в микрокаплях единичные фрагменты ДНК и полистирольные шарики с пришитым праймером;

проведение эмульсионной ПЦР (emPCR);

отмывка микрошариков от реагентов и удаление несвязянных с шариками нитей ДНК;

загрузка шариков в лунки проточной камеры;

загрузка лунок микрошариками с иммобилизованными ферментами.

Основные этапы пробоподготовки показаны на рис. 3.

 

Рис. 3 Подготовка ДНК к пиросеквенированию

 

Ещё одной изюминкой технологии, разработанной компанией "454 Life Sciences", являются специальные проточные камеры (PicoTiterPlateTM). Они содержат сотни тысяч микролунок, заполняемых шариками с образцами анализируемой ДНК и микрошариками с иммобилизованными ферментами (рис. 4).

 

 

При пропускании реагентов через проточную ячейку регистрируются люминесцентные сигналы, излучаемые сотнями тысяч микролунок. На димерных, тримерных и тетрамерных нуклеотидных повторах интенсивность сигналов пропорционально увеличивается. В то же время надёжно дифференцировать гомогенные тетрамеры и пентамеры уже практически невозможно, что затрудняет секвенирование последовательностей с протяжёнными нуклеотидными повторами.

Протяжённость секвенируемых участков ДНК может превышать 100 оснований (рис. 6).

 

Билет


Дата добавления: 2015-07-12; просмотров: 398 | Нарушение авторских прав


Читайте в этой же книге: Транскрипция у бактерий | Регуляция транскрипции у эукариот | Применение технологий секвенирования Illumina | Особенности организации генома эукариот |
<== предыдущая страница | следующая страница ==>
Подвижные гены и их использование в генной инженерии| Технология рекомбинантных ДНК

mybiblioteka.su - 2015-2024 год. (0.007 сек.)