Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Термомеханическая кривая

Читайте также:
  1. Аппроксимируемая кривая
  2. Бюджетно-налоговая политика: цели, инструменты.Кривая Лаффера
  3. Как будет выглядеть кривая производственных возможностей бригады из 5 чел. в рамках 40-часовой рабочей недели;
  4. Кривая намагничивания
  5. Кривая предложения конкурентной фирмы в краткосрочном
  6. Кривая совокупного спроса
  7. Кривая титрования раствора соли слабого электролита

 

Для аморфных полимеров в зависимости от температуры характерны три различных состояния - стеклообразное, высокоэластическое и вязкотекучее. Первые два относятся к твердому агрегатному состоянию, последнее - к жидкому. Высокоэластическое состояние является специфичным для полимеров.

Температурные области существования различных физических состояний полимеров определяются по зависимости какого-либо свойства от температуры. Наиболее простым и надежным являются дилатометрический и термомеханический методы. В первом случае изучается изменение объема в зависимости от температуры, во втором - деформации. Термомеханический метод был впервые разработан и широко применен для исследования полимеров Каргиным и Соголовой. Зависимость величины деформации полимеров от температуры, выраженная в графической форме, называется термомеханической кривой. На рис. 4.4 приведена типичная термомеханическая кривая аморфного полимера. Кривая состоит из трех участков, соответствующих трем физическим состояниям. Участок I отвечает области стеклообразного состояния, для которого характерны незначительные обратимые деформации. Участок II относится к высокоэластическому состоянию полимеров, главной особенностью которого являются большие обратимые деформации. Участок III отвечает области вязкотекучего состояния полимеров, для которого характерны необратимые деформации или течение.

 

 

Из рис. 4.5 видно, что температура текучести Тт возрастает с увеличением молекулярной массы полимера. Аналогичный эффект наблюдается для температуры стеклования Tс, но лишь в области очень малых молекулярных масс. По достижении молекулярной массы, характерной для механического сегмента данного полимера, его температура стеклования далее не изменяется.

Термомеханическая кривая существенно трансформируется для сшитых и кристаллических полимеров. Для первых исчезает область вязкотекучего, для вторых вырождается область высокоэластического состояния. При термомеханических исследованиях температура может изменяться непрерывно и ступенчато, когда измерения проводятся при постоянной температуре. В первом случае получаются завышенные значения температур стеклования и текучести.

 


Дата добавления: 2015-07-12; просмотров: 145 | Нарушение авторских прав


Читайте в этой же книге: Вязкость разбавленных растворов полимеров | Концентрированные растворы полимеров | Влияние зарядов на конформации макромолекул | Взаимодействие заряженных цепей с противоионами. Коллапс сеток | Свойства растворов полиэлектролитов | Природа жидкокристаллического состояния вещества | Влияние температуры и полей на жидкокристаллические системы | Вязкость растворов жидкокристаллических полимеров | Высокопрочные и высокомодульные волокна из жидкокристаллических полимеров | Условия кристаллизации. Строение полимерного кристалла |
<== предыдущая страница | следующая страница ==>
Кинетика кристаллизации| Стеклообразное и высокоэластическое состояния полимеров

mybiblioteka.su - 2015-2024 год. (0.006 сек.)