Читайте также:
|
|
Данные уравнения в общем случае имеют вид , где - непрерывные функции.
Разделим уравнение на , получим , где .
Известны два метода решения этих уравнений.
1. Методзамены переменной.
Искомую функцию заменяют на произведение двух функций
, где , - некоторые неизвестные дифференцируемые функции.
Подставим в уравнение, получим . Третье слагаемое сгруппируем с одним из первых слагаемых, либо с , либо с . Функции и входят в уравнение замены симметрично. Пусть объединим первое и третье слагаемые .
Искомой является одна функция , а введены с помощью замены две , , поэтому одну из них, пусть , выберем по своему усмотрению так, чтобы равнялось нулю. Тогда уравнение распадется на два уравнения, каждое из которых с разделяющимися переменными,
Необходимо сначала решить первое уравнение, найти функцию . Затем подставить эту функцию во второе уравнение и решить его.
Решаем первое уравнение. При решении этого уравнения достаточно найти не общее решение, а одно какое-либо частное решение
Þ Þ .
Подставим найденную функцию во второе уравнение и решим его. Найдем функцию .
.
Затем записываем решение исходного уравнения как произведение функций .
.
Получена конечная формула для нахождения общего решения линейного уравнения. Однако, при решении примеров, обычно, используют замену и повторяют приведенные выше действия.
2. Метод вариации произвольной постоянной.
Для нахождения общего решения неоднородного линейного уравнения сначала решают соответствующее однородное уравнение .
Данное уравнение с разделяющимися переменными. Решая его, получим
Þ Þ .
Далее, произвольную постоянную заменяют на функцию и ищут решение исходного неоднородного уравнения в виде
.
Теперь, чтобы получить решение уравнения, необходимо найти функцию . Найдем производную функции .
.
Подставим функцию и ее производную в исходное неоднородное уравнение .
.
Второе и третье слагаемые в левой части этого уравнения уничтожаются, получается дифференциальное уравнение относительно функции с разделяющимися переменными
.
Разделяем переменные и интегрируем
, где С – произвольная постоянная.
Записываем решение исходного неоднородного уравнения .
Дата добавления: 2015-12-07; просмотров: 86 | Нарушение авторских прав