Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Примеры решения задач. Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой

Читайте также:
  1. I. ЗАДАЧИ, РЕШАЕМЫЕ ОРГАНАМИ ВНУТРЕННИХ ДЕЛ ПРИ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ
  2. I. Решение логических задач средствами алгебры логики
  3. I. ЦЕЛИ И ЗАДАЧИ
  4. I.2. ЗАДАЧИ, РЕШАЕМЫЕ ОВД ПРИ ОРГАНИЗАЦИИ ПЕРВОНАЧАЛЬНЫХ ДЕЙСТВИЙ
  5. II. Основные задачи
  6. II. ПОСТАНОВКА ЗАДАЧ НА ПЕДАГОГИЧЕСКУЮ ПРАКТИКУ
  7. II. Решение логических задач табличным способом

 

Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.

 

 
 

Решение

2. В заделке может возникнуть реакция, представляемая двум: составляющими ( R Ay, R Ax), и реактивный момент МA. Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

 

3. Используем систему уравнений:

 

Знаки полученных реакций (+), следовательно, направления ре­акций выбраны верно.

3. Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.

 
 

Решение

 

1. Левая опора (точка А) — подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.

Правая опора (точка В) — неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.

2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецеле­сообразно.

3. Заменяем распределенную нагрузку сосредоточенной:

G = ql; G = 2*6 = 12 кН.

Сосредоточенную силу помещаем в середине пролета, далее за­дача решается с сосредоточенными силами (рис. 6.8, б).

4. Наносим возможные реакции в опорах (направление произвольное).

5. Для решения выбираем уравнение равновесия в виде

6. Составляем уравнения моментов относительно точек крепления:

Реакция отрицательная, следовательно, R Аy нужно направить н противоположную сторону.

 

7. Используя уравнение проекций, получим:

RBx — горизонтальная реакция в опоре В.

Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.

 

8. Проверка правильности решения. Для этого используем чет­вертое уравнение равновесия

 

Подставим полученные значения реакций. Если условие выполнено, решение верно:

-5,1 - 12 + 34,6 – 25 -0,7 = 0.

Пример 3. Опреде­лить опорные реакции балки, показанной на рис. 1.17, а.

Решение

 

Рассмотрим рав­новесие балки АВ. Отбросим опорное закрепление (задел­ку) и заменим его действие реакциями НА, VA и тА (рис. 1.17, б). Получили плоскую систему произвольно распо­ложенных сил.

Выбираем систему координат (рис. 1.17,6) и состав­ляем уравнения равновесия:

Составим проверочное уравнение

следовательно, реакции определены верно.

 

Пример 4. Для заданной балки (рис. 1.18, а) определить опорные реакции.

 

Решение

 

Рассматриваем равновесие балки АВ. Отбра­сываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему про­извольно расположенных сил.


Выбираем систему координат (см. рис. 1.18,6) и со­ставляем уравнения равновесия:

 

равнодействующая равномерно распреде­ленной нагрузки интенсивностью q1,

расстояние от точки А до линии действия равнодействующей q1(а + b);

равнодействующая равномерно распреде­ленной нагрузки интенсивностью q2;

расстояние от точки А до линии действия равнодействующей q2 (d — с).

 

 

Подставив числовые значения, получим

откуда VB = 28,8 кН;

— расстояние от точки В до линии действия равнодействующей q1 (a+b);

— расстояние от точки В до линии действия равнодействующей q2(d — c).

Подставив числовые значения, получим:

откуда VA = 81,2 кН.

Составляем проверочное уравнение:

следовательно, опорные реакции определены верно.

 

Пример 5. Для заданной стержневой системы (рис. 1.19, а) определить усилия в стержнях.

Решение

 

Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.

На балку действуют равномерно распределенная на­грузка интенсивностью q, сила Р и сосредоточенный мо­мент т.

Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б). Получили плоскую систему про­извольно расположенных сил.

Выбираем систему координат (см. рис. 1.19, б) и со­ставляем уравнения равновесия:


где q (a + b) — равнодействующая

равномерно распреде­ленной нагрузки интенсивностью q (на чертеже она показана штриховой ли­нией).

Подставив числовые значения, получим:

откуда NAC = 16 кН;

Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;

где NBD cos α — вертикальная составляющая силы NBD', NBFcos β — вертикальная составляющая силы N B F (линии действия горизонтальных состав­ляющих сил NBD и NBF проходят через точку А и поэтому их моменты относи­тельно точки А равны нулю). Подставляя числовые значения и учитывая, что N B D = 1,41 NBF, получаем:

откуда N B F = 33,1 кН.

Тогда NBD = 1,41*33,1 = 46,7 кН.

Для определения усилий в стержнях не было исполь­зовано уравнение равновесия: ΣPto= 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, усилия в стержнях определены верно.

 

Пример 6. Для заданной плоской рамы (рис. 1.20, а) определить опорные реакции

Решение

 

Освобождаем раму от связей и заменяем их действие реакциями NА, VA, VB (рис. 1.20, б). Получили плоскую систему произвольно расположенных сил.


Выбираем систему координат (см. рис. 1.20, б) и составляем уравнения равновесия:

 

 

где Р2 cos α — вертикальная составляющая силы Р2;

P2 sin α — горизонтальная составляющая силы Р2;

2qa — равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);

откуда VB = 5,27 qa;

или

откуда HA=7qa

линия действия силы Р2 cos α проходит через точку В и поэтому ее момент относительно точки В равен нулю

откуда VA = 7qa.

Для определения реакций не было использовано урав­нение равновесия Σ Piv=0. Если реакции определены верно, то сумма проекций на ось v всех сил, действую­щих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, опорные реакции определены верно.

Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.

Контрольные вопросы и задания

 

1. Замените распределенную нагрузку сосредоточенной и опре­делите расстояние от точки приложения равнодействующей до опо­ры А (рис. 6.9).

 

2. Рассчитайте величину суммарного момента сил системы от­носительно точки А (рис. 6.10).

3. Какую из форм уравнений равновесия целесообразно исполь­зовать при определении реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?

 
 

5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

 

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.


Дата добавления: 2015-11-26; просмотров: 556 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.015 сек.)