Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Геометрический и механический смысл производной

Читайте также:
  1. I Геометрический смысл дифференциала
  2. II Геометрический смысл производной
  3. VI. Выберите подходящие по смыслу слова и вставьте в пропуски. Подчеркните их.
  4. Биологический смысл модели
  5. Богатство художественного смысла в поэзии Ф. И. Тютчева
  6. Боль, страдания, лишения, конфликты и войны. Смысл и способы решения.
  7. БРЕННОСТЬ И СМЫСЛ

Производная функции и основные методы дифференцирования

Производная функции в точке является основным понятием дифференциального исчисления. Она характеризует скорость изменения функции в указанной точке. Производная широко используется при решении целого ряда задач математики, физики, других наук, в особенности при изучении скорости различного рода процессов.

Производная равна пределу отношения приращения функции к приращению аргумента, при условии, что последний стремится к нулю:

Функция, которая имеет конечную производную в некоторой точке, называется дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием функции.

Дифференциал функции

Пусть функция дифференцируема в точке , то есть приращение этой функции можно представить в виде суммы двух слагаемых: линейного относительно и нелинейного членов:

Дифференциалом функции называется линейная относительно часть приращения функции. Она обозначается как или . Таким образом:

Дифференциал функции составляет основную часть ее приращения.

Наряду с понятием дифференциала функции вводится понятие дифференциала аргумента. По определению дифференциал аргумента есть приращение аргумента:

Формулу для дифференциала функции можно записать в виде:

Отсюда получаем, что

Итак, это означает, что производная может быть представлена как обыкновенная дробь - отношение дифференциалов функции и аргумента.

Геометрический и механический смысл производной

С вычислением производной мы сталкиваемся всякий раз, когда требуется определить скорость изменения одной величины - функции в зависимости от изменения другой величины - независимой переменной.

Средней скоростью изменения функции при переходе независимой переменной от значения к значению называется отношение приращения функции к приращению независимой переменной, то есть

Истинной или мгновенной скоростью изменения функции при заданном значении независимой переменной называется предел, к которому стремится средняя скорость изменения функции при стремлению к нулю приращения аргумента :


Дата добавления: 2015-11-26; просмотров: 31 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.007 сек.)