Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Погрешности обработки заготовки

Читайте также:
  1. I. Отчет составляется по строго установленной форме с учетом возможности использования вычислительной техники для ее обработки.
  2. III. Этап обработки результатов
  3. Аналитическая обработка данных, системы оперативной аналитической обработки (ОLAP).
  4. Борьба с сорняками в системе послепосевной обработки почвы.
  5. Влияние технологической обработки на минеральный состав пищевых продуктов
  6. Вопрос 4 Способы и режимы тепловой обработки древесины. Применяемое оборудование техника безопасности.
  7. Выбор заготовки

Под точностью детали понижается ее соответствие требованиям чертежа: по размерам, геометрической форме, правильности взаимного расположения обрабатываемых поверхностей и по степени их шероховатости.

Систематическая погрешность — это такая погрешность, которая для всех заготовок рассматриваемой партии остается постоянной или же закономерно изменяется при переходе от каждой обрабатываемой заготовки к следующей.

Причинами возникновения систематических и переменных систематических погрешностей обработки заготовок являются: неточность, износ и деформация станков, приспособлений и инструментов; деформация обрабатываемых заготовок; тепловые явления, происходящие в технологической системе и в смазочно-охлаждающей жидкости, а также погрешности теоретической схемы обработки заготовки.

В процессе обработки партии заготовок на настроенных станках их размеры непрерывно колеблются в определенных границах, отличаясь друг от друга и от настроенного размера на величину случайной погрешности.

Случайная погрешность - это такая погрешность, которая для разных заготовок рассматриваемой партии имеет различные значения, причем ее появление не подчиняется никакой видимой закономерности.

В результате возникновения случайных погрешностей происходит рассеяние размеров заготовок, обработанных при одних и тех же условиях. Рассеяние размеров вызывается совокупностью многих причин случайного характера, не поддающихся точному предварительному определению и проявляющих свое действие одновременно и независимо друг от друга. К таким причинам относятся колебания твердости обрабатываемого материала и величины снимаемого припуска; изменения положения исходной заготовки в приспособлении, связанные погрешностями ее базирования и закрепления или обусловленные неточностями приспособления; неточности установки положения суппортов по упорам и лимбам; колебания температурного режима обработки и упругих отжатий элементов технологической системы под влиянием нестабильных сил резания и т. п.

Для выявления и анализа закономерностей распределения размеров заготовок при их рассеянии успешно применяются методы математической статистики.

Погрешности изготовления и сборки станков ограничиваются нормами ГОСТов, определяющими допуски и методы проверки геометрической точности станков, т.е. точности станков в ненагруженном состоянии.

Погрешности геометрической точности станков полностью или частично переносятся на обрабатываемые заготовки в виде систематических погрешностей. Величина этих систематических погрешностей поддается предварительному анализу и расчету. Например, при непараллельности оси шпинделя токарного станка направлению движения суппорта в горизонтальной плоскости цилиндрическая повёрхность обрабатываемой заготовки, закрепленной в патроне станка, превращается в коническую.

Неточность режущего инструмента (особенно мерного инструмента типа разверток, зенкеров, протяжек, концевых пазовых фрез и фасонного инструмента) во многих случаях непосредственно переносится на обрабатываемые заготовки, обусловливая появление систематических погрешностей формы и размеров обрабатываемых поверхностей. Однако в связи с тем, что точность изготовления режущего инструмента на специальных инструментальных заводах или в инструментальных цехах машиностроительных заводов обычно достаточно высока, неточность изготовления инструментов практически мало отражается на точности изготовления деталей. Значительно большее влияние на точность обработки заготовок оказывают погрешности режущего инструмента, связанные с его износом.

В соответствии с общими закономерностями износа при трении скольжения в начальный период работы инструмента, называемый периодом начального износа (участок ׀ на рис. 2.1), износ наиболее интенсивен. В период начального износа происходит приработка режущего лезвия инструмента, сопровождающаяся выкрашиванием отдельных неровностей и заглаживанием штрихов — следов заточки режущих граней. В этот период шероховатость обработанной поверхности обычно постепенно уменьшается. Начальный износ Uн и его продолжительность Lн (т. е. продолжительность приработки инструмента) зависят от материалов режущего инструмента и изделия, качества заточки, а также от доводки инструмента и режимов резания. Обычно продолжительность начального износа, выраженная длиной Lн пути резания, находится в пределах 500 — 2000 м (первая цифра соответствует хорошо доведенным инструментам, вторая — заточенным инструментам).

Рис. 2.1. Зависимость износа инструмента U от длины

пути резания

Второй период износа (участок ׀׀) характеризуется нормальным износом инструмента, прямо пропорциональным пути резания. Интенсивность этого периода износа принято оценивать относительным (удельным) износом Uo (мкм/км), определяемым формулой:

Uo = U/L,

где U — размерный износ в микрометрах на пути резания L;
L — путь резания в зоне нормального износа в километрах.

Длина L пути резания в период нормального износа при обработке стали резцами Т15К6 может достигать 50 км.

Третий период износа (участок ׀׀׀) соответствует наиболее интенсивному катастрофическому износу, сопровождающемуся значительным выкрашиванием и поломками инструмента, недопустимыми при нормальной эксплуатации инструмента.

Расчет износа режущего инструмента, влияющего на точность обработки, применительно к условиям нормального износа, протекающего в зоне ׀׀, обычно производят по формуле:

U = Uo*L/1000,

где U —размерный износ режущего инструмента, мкм; L —длина пути резания, м.

Относительный (удельный) износ Uo режущего инструмента в значительной мере зависит от материала режущего инструмента и режима резания, материала обрабатываемого изделия и жесткости технологической системы «станок — приспособление — заготовка— инструмент».

При повышении жесткости технологической системы, способствующем уменьшению вибраций, износ режущего инструмента заметно снижается.

В связи с тем, что общий размерный износ инструмента обратно пропорционален подаче, а в ряде случаев увеличение подачи повышает общую размерную стойкость инструмента и при достаточной жесткости технологической системы повышает точность обработки. Применение широких резцов и других инструментов с выглаживающими фасками, позволяющих повысить подачу, способствует росту точности обработки при одновременном повышении ее производительности.

Изменение глубины резания незначительно влияет на относительный износ инструмента.

Усилия зажима (закрепления) заготовок в приспособлениях, так же как и усилия резания, вызывают упругие деформации заготовок, порождающие погрешности формы обработанных заготовок. При постоянстве размеров заготовок и усилий зажима вызываемые ими погрешности формы деталей являются систематическими и могут быть вычислены по соответствующим формулам.

Например, при закреплении втулки в патроне происходит ее упругая деформация (рис. 2.2, а, б), причем в местах А приложения кулачков радиус заготовки уменьшается, а в точках В увеличивается.

Рис. 2.2. Схема возникновения погрешности формы отверстия в тонкостенной втулке

Погрешность геометрической формы обрабатываемого отверстия втулки определяется разностью наибольшего и наименьшего радиусов (рис. 2.2. в).

Погрешность формы обрабатываемой заготовки, связанная с ее упругой деформацией при закреплении в кулачковых патронах, зависит от числа кулачков.

При форме кулачков, соответствующей форме заготовки, и наиболее полном прилегании зажимных поверхностей кулачков к поверхности заготовки погрешность геометрической формы втулки также снижается.

Таким образом, на погрешности формы обрабатываемых заготовок большое влияние оказывают усилия их зажима в приспособлениях. Вместе с тем в определенных условиях существенными причинами возникновения погрешностей обрабатываемых заготовок могут явиться силы тяжести (деформации заготовок под действием собственной массы), центробежные силы (деформации неуравновешенных масс отдельных частей заготовок в момент их обработки) и остаточные напряжения заготовки. При одностороннем снятии припуска или снятии неравномерного припуска в обрабатываемой заготовке происходит перераспределение внутренних напряжений, образовавшихся в исходных заготовках при их литье, штамповке, термической обработке и других технологических операциях. Упругие деформации заготовок, вызываемые действием перечисленных сил, служат источником возникновения систематических погрешностей геометрической формы деталей.

При непрерывной работе станка происходит постепенное нагревание всех элементов технологической системы, вызывающее появление переменной систематической погрешности обработки заготовок.

Тепловые деформации станков. Основными причинами нагревания станков и их отдельных частей являются потери на трение в подвижных механизмах станков (подшипниках, зубчатых передачах), гидроприводах и электроустройствах, во встроенных электромоторах, а также теплопередача от охлаждающей жидкости, отводящей теплоту из зоны резания, и нагревание от внешних источников (местное нагревание от близко расположенных батарей, солнечных лучей, охлаждение через фундамент).

Для устранения погрешности обработки, связанной с тепловыми деформациями станка, производят предварительный прогрев станка его обкаткой вхолостую в течение 2 — 3 ч. Последующую обработку заготовок следует проводить без значительных перерывов в работе станка.

Тепловые деформации инструмента. Некоторая часть теплоты, выделяющейся в зоне резания, переходит в режущий инструмент, вызывая его нагревание и изменение размеров. При токарной обработке наибольшая часть погрешности, связанной с тепловыми деформациями технологической системы, обусловлена удлинением резцов при их нагревании. При повышении скорости резания, глубины резания и подачи интенсифицируется нагревание, а, следовательно, увеличивается удлинение резца.

Нагревание и удлинение резцов прямо пропорционально твердости обрабатываемого материала. В обычных условиях работы без охлаждения удлинение резца может достигать 30 — 50 мкм. При создании обильного охлаждения удлинение резцов уменьшается в 3 — 3,5 раза.

Нагревание режущих инструментов при фрезеровании, нарезании зуба и других операциях прерывистой механической обработки, выполняемых с охлаждением, оказывает заметно меньшее влияние на точность обработки, чем нагревание резцов.

Тепловые деформации заготовки. Некоторая часть теплоты, выделяющейся в зоне резания, переходит в обрабатываемое изделие, вызывая изменение его размеров и появление погрешности обработки. При равномерном нагревании изделия возникает погрешность размеров, а при местных нагревах отдельных участков обрабатываемых изделий — коробление, приводящее к образованию погрешности формы.

Нагревание обрабатываемого изделия зависит от режимов резания. При токарной обработке с увеличением скорости резания и подачи, т. е. с уменьшением продолжительности теплового воздействия на обрабатываемое изделие, его температура понижается.

В случае увеличения глубины резания температура обрабатываемой заготовки возрастает.

Нагревание обрабатываемых заготовок имеет существенное значение при изготовлении тонкостенных деталей. Во время обработки массивных заготовок влияние их нагревания на точность обработки невелико.

При обработке некоторых сложных профилей фасонных деталей сама схема обработки предполагает определенные допущения и приближенные решения кинематических задач и упрощения конструкции режущих инструментов, вызывающие появление систематических погрешностей обработки (обычно систематических погрешностей формы).

Например, при нарезании зубчатых колес червячными фрезами теоретическая схема операции (качение нарезаемого зубчатого колеса по прямолинейной рейке осевого сечения червячной фрезы) заведомо нарушается наклоном канавки, образующей режущие лезвия фрезы, что ведет к появлению систематической погрешности эвольвентного профиля зуба. Аналогично возникают погрешности эвольвенты зуба в процессе его строгания долбяками в связи с нарушением их правильного профиля при образовании переднего угла при заточке.

При нарезании зуба модульными фрезами систематическую погрешность профиля зуба вызывает несоответствие количества нарезаемых зубьев расчетному числу, для которого спроектирована фреза.

При фрезеровании и нарезании резьбы вращающимися резцами (вихревое нарезание) кинематическая схема операции предопределяет появление огранки (волнистости) поверхности резьбы, являющейся систематической погрешностью формы поверхности резьбы.

 


Дата добавления: 2015-11-26; просмотров: 109 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.01 сек.)