Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Матрицы коэффициентов системы.

Читайте также:
  1. II. Определение возможного способа разработки системы.
  2. Автотрофные экосистемы. Агроэкосистемы, их загрязнения.
  3. Билет 60. Рубежные решения Верховного Суда США и их значение для правовой системы.
  4. Вопрос. Назовите элементы денежной системы. Охарактеризуйте зависимость между покупательной способностью денег и инфляцией. Охарактеризуйте основные типы денежных реформ.
  5. Выбор базовой модели (матрицы) видения
  6. Где кончаются системы...
  7. Глава 6. Вторые системы.

Система двух линейных уравнений с двумя неизвестными. Совместные и несовместные системы.

Системы двух линейных уравнений с двумя неизвестными имеют вид:

где a, b, c, d, e, f – заданные числа; x, y – неизвестные. Числа a, b, d, eкоэффициенты при неизвестных; c, fсвободные члены. Решение этой системы уравнений может быть найдено двумя основными методами.

Метод подстановки.

1) Из одного уравнения выражаем одно из неизвестных, например x, через коэффициенты и другое неизвестное y:

x = (c – by) / a. (2)

2) Подставляем во второе уравнение вместо x:

d (c – by) / a + ey = f.

3) Решая последнее уравнение, находим y:

y = (af – cd) / (ae – bd).

4) Подставляем это значение вместо y в выражение (2):

x = (ce – bf) / (ae – bd).

Сложение или вычитание. Этот метод состоит в следующем.

1) Умножаем обе части 1-го уравнения системы (1) на (– d), а обе части 2-го уравнения на а и складываем их:

Отсюда получаем: y = (af – cd) / (ae – bd).

2) Подставляем найденное для y значение в любое уравнение системы (1):

ax + b(af – cd) / (ae – bd) = c.

3) Находим другое неизвестное: x = (ce – bf) / (ae – bd).

Совместные и несовместные системы.

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

 

Очевидно, что система (1) может быть записана в виде:

x1 + x2 + … + xn

 

 

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.

 

2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

Пример. Определить совместность системы линейных уравнений.

 

А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;

 

A* =

 

RgA* = 2.

Система совместна. Решения: x1 = 1; x2 =1/2.

Пример. Определить совместность системы линейных уравнений:

 

A =

 

~ . RgA = 2.

A* = RgA* = 3.

Система несовместна.

Матрицы коэффициентов системы. Определитель 2-ого порядка.

Матрицы коэффициентов системы.

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A − 1, поскольку умножив обе части уравнения на эту матрицу слева

A − 1 AX = A − 1 B

A − 1 A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A − 1 B.

Все правила, по которым проводятся операции над матрицами, выводятся из операций над системами уравнений.


Дата добавления: 2015-11-26; просмотров: 91 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.007 сек.)