Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Параллельные прямые на плоскости Лобачевского

Читайте также:
  1. III. Пересечение многогранника и плоскости
  2. Внешние интерфейсы МПС: основные параметры, последовательные и параллельные, синхронные и асинхронные, способы соединения устройств.
  3. Геометрическая нейтраль коллектора проходит в плоскости, совпадающей с плоскостью оси полюсов. Щетки устанавливаются на геометрической нейтрали коллектора.
  4. Геометрия Лобачевского; ее модели
  5. Глава 7. Параллельные миры.
  6. Графическая технология решения позиционных задач на касание плоскости и поверхности и сопряжение поверхностей
  7. Двойниковые плоскости

Из аксиомы Лобачевского сразу выходит, что через точку, взятую вне данной прямой, можно провести бесконечно много прямых, которые ее не пересекают. На самом деле, пусть через точку М проходит две прямые , которые не пересекают прямую а, их существования обеспечивается аксиомой Лобачевского (рис.23).

Тогда, очевидно, все прямые, которые проходят в середине вертикальных углов , не пересекают а (если бы какая-нибудь с, которая лежит в середине АМВ, пересекала бы а в точке К, то МВ лежала бы в середине угла ОМК и пересекала бы а).

Среди этих прямых Лобачевский выделил две специальные прямые, которые назвал параллельными к данной прямой. Опустим из точки М перпендикуляр на и проведем через точку М прямую /Прямые не пересекаются (рис. 24),

 

Рассмотрим пучок лучей, которые выходят из точки М и размещены внутри угла Эти лучи можно разбить на два класса: лучи, которые не пересекают прямую , и лучи которые ее пересекают. Лучи первого класса расположены выше лучей второго.

В таком случае существует граничный луч , который разделяет оба класса лучей: все лучи, которые лежат выше этого луча, принадлежат первому классу, а все лучи, которые лежат ниже, принадлежат второму классу. Луч принадлежит первому классу, так как не пересекает прямую .

Определение. Граничная прямая , которая не пересекает прямую , называется параллельной прямой в направлении .

Аналогично, существует граничный луч , который расположен в середине угла и не пересекает . Этот луч симметричен лучу относительно прямой . Прямая , которая содержит этот луч, называется параллельной прямой в направлении .

Таким образом, по Лобачевскому, через данную точку, которая не лежит на ней, можно провести две параллельные прямые. На рисунке 24 направления параллельности изображены стрелками.

Все прямые, которые не пересекают прямую , отличные от параллельных прямых, называются расходящимися. А прямые, которые пересекают прямую , называются сходящимися.

Итак, в отличие от евклидовой плоскости, где прямые делятся на два класса: параллельные и пересекающиеся. В плоскости Лобачевского прямые делятся на три класса: параллельные, сходящиеся и расходящиеся.

Угол , который образуют прямая и с перпендикуляром , называется углом параллельности в точке М относительно прямой (рис.24) . Этот угол для произвольной точки М и произвольной прямой - острый: .


Дата добавления: 2015-11-26; просмотров: 102 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.005 сек.)