Читайте также:
|
|
Пути передачи сигнала клетке (аутокринный, паракринный, эндокринный). Аутокринная регуляция обмена веществ, супероксидный радикал и оксид азота. Механизмы образования и биологическое действие.
Гормоны передают сигнал путем переноса в кровотоке от места синтеза до клеток-мишеней. В этом случае говорят об эндокринном действии (пример: инсулин). В случае тканевых гормонов (паратгормон) локального действия, когда клетки-мишени расположены в непосредственной близости к секреторным клеткам, говорят о паракринном действии (пример: гормоны желудочно-кишечного тракта). Когда сигнальные вещества продуцируются и утилизируются в самих клетках, говорят об аутокринном действии (пример: простагландины). Оксид азота образуется из аминокислоты аргинина при участии сложной Са2+-зависимой ферментной системы, названной NO-синтазой, которая присутствует в нервной ткани, эндотелии сосудов, тромбоцитах и других тканях. В клетках-мишенях NO взаимодействует с входящим в активный центр гуанилатциклазы ионом железа и способствует быстрому образованию цГМФ. Образовавшийся цГМФ вызывает расслабление гладклй мускулатуры сосудов. Однако действие NO кратковременно, несколько секунд. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.
14.Производные арахидоновой кислоты – простагландины (простациклин, тромбоксан) и лейкотриены. Биологическая роль. Роль фосфолипазы А2 и циклооксигеназы в продукции производных арахидоновой кислоты. Ингибиторы циклооксигеназы. Эйкозаноиды – биологически активные вещества, синтезируемые большинством клеток из полиеновых жирных кислот, содержащих 20 углеродных атомов («эйкоза» – по гречески означает 20).
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, простациклины, лейкотриены – высокоактивные регуляторы клеточных функций.
Эйкозаноиды – гормоны местного действия по ряду признаков:
- образуются во всех клетках и тканях человека за исключением эритроцитов;
- оказывают биологический эффект по месту своего образования;
- концентрация в крови меньше, чем необходимо, чтобы вызвать ответ в других (удаленных) клетках-мишенях.
Эйкозаноиды участвуют во многих процессах регулируют тонус гладкой мускулатуры (а следовательно – артериальное давление), состояние бронхов, кишечника, матки, секреторную функцию желудка, гемодинамику почек, жировой, водно-солевой обмены, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Главный субстрат для синтеза эйкозаноидов – арахидоновая кислота. Под действием фосфолипазы А2 или С арахидоновая кислота освобождается из биомембран и может превращаться по двум путям – циклооксигеназному и липоксигеназному. Простациклины – PGI2, PGI3.Простациклин PGI2 синтезируется в эндотелии сосудов, сердечной мышце, ткани матки и слизистой желудка. Он расширяет сосуды, снижая артериальное давление, вызывает дезагрегацию тромбоцитов (препятствует образованию тромбов). Тромбоксаны – А2, А3; В2 – продукт катаболизма А2 (активностью не обладает). Синтезируются в тромбоцитах, ткани мозга, легких, почек. Вызывают агрегацию тромбоцитов (способствуют образованию тромбов), оказывают мощное сосудосуживающее действие. Лейкотриены – А, В, С, D. Участвуют в воспалительных процессах, аллергических и иммунных реакциях, способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, оказывают сосудосуживающее действие. Арахидоновая кислота высвобождается из фосфолипидов под действием фосфолипазы А2. Циклооксигеназа 1 - конститутивный фермент, синтезирующийся с постоянной скоростью. Синтез циклооксигеназы 2 увеличивается при воспалении и индуцируется соответствующими медиаторами - цитокинами. Оба типа циклооксигеназ катализируют включение 4 атомов кислорода в арахидоновую кислоту и формирование пятичленного кольца. Аспирин - препарат, подавляющий основные признаки воспаления. Механизм противовоспалительного действия аспирина стал понятен, когда обнаружили, что он ингибирует циклооксигеназу. Следовательно, он уменьшает синтез медиаторов воспаления и, таким образом, уменьшает воспалительную реакцию. Циклооксигеназа необратимо ингибируется путём ацетилирования серина в положении 530 в активном центре (рис. 8-54). Однако эффект действия аспирина не очень продолжителен, так как экспрессия гена этого фермента не нарушается и продуцируются новые молекулы фермента. Другие нестероидные противовоспалительные препараты (например, ибупрофен и ацетаминофен) действуют по конкурентному механизму, связываясь в активном центре фермента, и также снижают синтез простагландинов.
15.Понятие о цитокинах. Биороль интерлейкинов и факторов роста (васкулярный эндотелиальный фактор роста (VEGF). Цитокины — группа гормоноподобных белков и пептидов — синтезируются и секретируются клетками иммунной системы и другими типами клеток. Разнообразные биологические функции цитокинов подразделяются на три группы: они управляют развитием и гомеостазом иммунной системы, осуществляют контроль за ростом и дифференцировкой клеток крови (системой гемопоэза) и принимают участие в неспецифических защитных реакциях организма, оказывая влияние на воспалительные процессы, свертывание крови, кровяное давление. Вообще цитокины принимают участие в регуляции роста, дифференцировки и продолжительности жизни клеток, а также в управлении апоптозом. Интерлейкины это большая группа цитокинов (от ИЛ-1 до Ил-18), синтезируемых в основном T-клетками, но в некоторых случаях также мононуклеарными фагоцитами или другими тканевыми клетками.Интерлейкины обладают разнообразными функциями, но большинство их стимулирует другие клетки для деления или дифференцировки, при этом каждый из них действует на отдельную, ограниченную группу клеток, экспрессирующих специфичные для данного интерлейкина рецепторы. Это растворимые пептиды,сильные иммунорегуляторы локального действия; активируют Т- клетки. Фактор роста васкулярного эндотелия (VEGF) - фактор роста, который выполняет свои функции через тирозин-киназовые рецепторы, расположенные в мембране эндотелиальных клеток. VEGF является одним из самых важных стимуляторов ангиогенеза в разнообразных по характеристикам тканях. Экспрессия VEGF регулируется гипоксией. Гипоксическая индукция ведет к повышению регуляции VEGF и впоследствии к увеличению числа кровеносных сосудов. Секреция опухолью VEGF приводит к стимуляции роста эндотелиальных клеток и увеличению проницаемости капилляров. и, наконец, - к образованию новых кровеносных сосудов. 16.Белки межклеточных контактов и адгезии. Хемокины. Молекулы межклеточной адгезии - это связанные с плазматической мембраной белки, которые обеспечивают механическое взаимодействие клеток друг с другом. Часто это молекулы, которые пронизывают мембрану и присоединены к цитоскелету. С их помощью клетки при движении могут «подтягиваться» к другим клеткам или перемещаться по внеклеточному матриксу. Во многих случаях отдельная молекула межклеточной адгезии способна взаимодействовать не с одним, а с несколькими лигандами, для чего служат разные участки связывания. Хотя связывание индивидуальных молекул адгезии со своими лигандами обычно происходит с низким сродством, авидность взаимодействия может быть довольно высокой, за счет того, что молекулы адгезии расположены на поверхности клеток кластерами, и образуют участки многоточечного связывания. Адгезия клеток одного типа к клеткам другого типа может изменяться в результате увеличения числа молекул адгезии на клеточной поверхности либо при изменении их аффинности и/или авидности.К хемокинам относятся белки, способные регулировать направленное движение лейкоцитов в крови и тканях. Продуцентами хемокинов являются лейкоциты, тромбоциты, фибробласты, эпителиальные и эндотелиальные клетки и многие другие. Их действие реализуется через специализированные рецепторы, которые экспрессируются на клетках. Различают 4 типа хемокинов: 1. α-хемокины. К этой группе относятся молекулы, имеющие два цистеиновых остатка, разделенных любым аминокислотным остатком (-с- х-с). Представителями этого семейства являются ИЛ-8, GROα,β,γ, IP-10. Эти хемокины участвуют в регуляции острого воспаления, являются сильными хемоаттрактантами для нейтрофилов. 2. β-хемокины. Эта группа содержит молекулы, имеющие два цистеиновых остатка рядом (-с-с-). К этой группе хемокинов относятся RANTES, MIP-1, MCP-1, -2, -3, -4 и другие. Молекулы этого семейства участвуют в хроническом воспалении. 3. γ-хемокины. Молекулы этой группы имеют в своем составе один цистеиновый остаток. Представителем этой группы является лимфотактин. Хемокин является специфичным фактором для Т-лимфоцитов и НК-клеток, он не оказывает влияния на макрофаги и нейтрофилы. 4. схххс-хемокины. Эта группа содержит молекулы, в которых два цистеиновых остатка разделены тремя аминокислотными остатками. К этой группе хемокинов относится фракталкин, который проявляет специфичность в отношении Т-клеток и НК-клеток. Этот хемокин регулирует миграцию клеток и их адгезию. 17.Гистогормоны (гистамин, серотонин, гастрин, секретин, холецистокинин, натрийуретический пептид). Клетки-продуценты, пути передачи сигналов, биологическая роль. К местным факторам (гистогормонам,тканевым факторам) относятся такие соединения, которые обеспечивают, как правило, саморегуляцию тканевых процессов в месте их образования. Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани. Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций. Гистамин выполняет в организме человека следующие функции: стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона); повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль); сокращает гладкую мускулатуру лёгких, вызывает удушье; участвует в формировании воспалительной реакции - вызывает расширение сосудов, покраснение кожи, отёчность ткани; вызывает аллергическую реакцию; выполняет роль нейромедиатора; является медиатором боли. Серотонин - нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-гидрокситриптофана в результате действия декарбоксилазы ароматических аминокислот. Этот фермент обладает широкой специфичностью и способен также декарбоксилировать триптофан и ДОФА, образующийся из тирозина. 5-Гидрокситриптофан синтезируется из триптофана под действием фенилаланингидроксилазы с коферментом Н4БП (этот фермент обладает специфичностью к ароматическим аминокислотам и гидроксидирует также фенилаланин Серотонин- биологически активное вещество широкого спектра действия. Он стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием. По некоторым данным он может принимать участие в аллергических реакциях, поскольку в небольших количествах синтезируется в тучных клетках. Гастрин продуцируется в G-клетках слизистой желудка и 12-перстной кишки, а также островковых клетках поджелудочной железы.В норме основное количество гастрина образуется в желудке. Главная функция гастрина - стимуляция выделения соляной кислоты париетальными клетками дна желудка. Помимо этого, гастрин стимулирует выделение пепсиногена, внутреннего фактора, секретина, а также бикарбонатов и ферментов поджелудочной железой, желчи в печени, активирует моторику желудочно-кишечного тракта. Основными физиологическими стимулами образования гастрина служат приём белковой пищи и снижение кислотности желудочного сока. Выделение гастрина повышается также под действием нервных стимулов, адреналина, увеличения уровня кальция. Снижение секреции гастрина вызывает повышение кислотности желудочного сока, а также секретин, соматостатин, вазоактивный кишечный полипептид (VIP), гастроингибирующий полипептид (GIP), глюкагон и кальцитонин. Секретин - гормон, который вырабатывают клетки тонкой кишки, а также D-клетки поджелудочной железы. Он состоит из 27 аминокислот. Его функция заключается в том, чтобы вызывать в поджелудочной железе выделение двууглекислой соли (бикарбоната). Эта секреция стимулируется наличием кислоты в желудке после приема пищи. Поджелудочная железа выделяет ферменты, позволяющие переваривать пищу, поступающую из желудка и направляющуюся в тонкую кишку. Эти ферменты не могут должным образом совершать свою работу по пищеварению, если кислотная среда желудка не будет нейтрализована бикарбонатом поджелудочной железы. Таким образом, когда выработка секретина недостаточна, бикарбонат не образуется и пище не переваривается должным образом. Холецистокинин (устаревшее название панкреозимин) — нейропептидный гормон В желудочно-кишечном тракте холецистокинин продуцируется I-клетками слизистой оболочки двенадцатиперстной кишки и проксимальным отделом тощей кишки. Стимуляторами секреции холецистокинина являются поступающие в кишечник из желудка белки, жиры, особенно жирные кислоты с длинной цепью, имеющиеся в жареных продуктах, составные компоненты желчегонных трав (алкалоиды, протопин, сангвинарин, эфирные масла и др.), кислоты. Также стимулятором холецистокинина является гастрин-рилизинг-пептид. Холецистокинин стимулирует сокращение гладкомышечной оболочки желчного пузыря и вызывает его опорожнение в двенадцатиперстную кишку, а также стимулирует расслабление сфинктера Одди и увеличивает ток печёночной желчи. Холецистокинин увеличивает секрецию поджелудочной железы, снижает давление в билиарной системе и вызывает сокращение привратника желудка, чем тормозит перемещение химуса в двенадцатиперстную кишку. Холецистокинин является блокатором секреции соляной кислоты обкладочными клетками слизистой оболочки желудка.Предсердный натрийуретический пептид (ANP), мозговой натрийуретический пептид (BNP) и C-натрийуретический пептид (CNP) - это гормоны, секретируемых предсердием, желудочком и эндотелиальными клетками сосудов соответственно. Натрийуретические пептиды ингибируют ренин-ангиотензин-альдостероновую систему и способствуют усиленной экскреции натрия и периферической вазодилатации. 18.Механизм действия сигнальных молекул с участием мембранных рецепторов, сопряженных с G-белками и аденилатциклазой. Гормоны, взаимодействие которых с рецептором клетки-мишени приводит к образованию цАМФ действуют через систему, включающую: белок-рецептор, G-белок и фермент аденилатциклазу.Последовательность событий, приводящих к изменению активности аденилатциклазы:связывание гормона с рецептором;комплекс гормон-рецептор взаимодействует с G-белком, изменяя его конформацию;вследствие изменения конформации G-белка происходит замена ГДФ на ГТФ;
- комплекс GS-белок • ГТФ активирует аденилатциклазу (комплекс GI-белок • ГТФ ингибирует аденилатциклазу);
- активация аденилатциклазы приводит к увеличению скорости образования цАМФ из АТФ.
Далее образовавшийся под действием аденилатциклазы цАМФ активирует протеинкиназу А. Активированная протеинкиназа А фосфорилирует ферменты и другие белки, что сопровождается изменением функциональной активности белков-ферментов (активацией или ингибированием).
Протеинкиназа – это внутриклеточный фермент, который может существовать в двух формах. В отсутствие цАМФ протеинкиназа представлена тетрамером, состоящим из двух каталитических (2С) и двух регуляторных (2R) субъединиц (неактивный фермент). В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну 2R-субъединицу и две свободные каталитические субъединицы С. Субъединицы С обладают ферментативной активностью.
19.Механизм действия сигнальных молекул с участием мембранных рецепторов, сопряженных с G-белками и фосфолипазой С. Функционирование инозитолтрифосфатной системы передачи гормонального сигнала обеспечивают: рецептор, фосфолипаза С, белки и ферменты мембран и цитозоля:
связывание гормона с рецептором приводит к активации фосфолипазы С;
фосфолипаза С катализирует расщепление мембранного фосфатидилинозитол-4,5-бифосфата на два вторичных посредника – диацилглицерол и инозитолтрифосфат (ИФ3);
ИФ3 усиливает поступление Са2+ в цитозоль и обеспечивает его регуляторные эффекты диацилглицерол активирует протеинкиназу С;
конечный эффект обоих посредников – фосфорилирование внутриклеточных белков и ферментов и изменение их активности.
20.Механизм действия сигнальных молекул с участием внутриклеточных рецепторов и ДНК. Передача сигнала гормонов с липофильными свойствами (стероидные гормоны) и тироксина возможна при прохождении их через плазматическую мембрану клеток-мишеней. Рецепторы гормонов находятся в цитозоле или ядре. Ядерные и цитозольные рецепторы содержат ДНК – связывающий домен.
Последовательность событий, приводящих к активации транскрипции:
· проникновение гормона через билипидный слой мембраны в клетку;
· образуется комплекс гормон-рецептор, который перемещается в ядро клетки и взаимодействует с регуляторным участком: ДНК-энхансером или сайленсером;
· при взаимодействии с энхансером увеличивается (при взаимодействии с сайленсером - уменьшается) доступность промотора для РНК-полимеразы;
· соответственно увеличивается (уменьшается) скорость транскрипции структурных генов и скорость трансляции;
· изменяется количество белков (в том числе ферментов), которые влияют на метаболизм и функциональное состояние клетки.
Эффекты гормонов, которые передают сигнал посредством внутриклеточных рецепторов, реализуются через определенный промежуток времени, так как на протекание матричных процессов (транскрипция и трансляция) требуется несколько часов.
21.Рецепторы с тирозинкиназной активностью. Рецепторы, сопряженные с ионными каналами. Рецептор к инсулину обладает тирозинкиназной активностью. Он состоит из двух α-субъединиц и двух β-субъединиц, которые связаны между собой дисульфидными связями и нековалентными взаимодействиями.
На поверхности мембраны находятся α-субъединицы с доменом для связывания с инсулином, β-субъединицы пронизывают бислой мембраны и не взаимодействуют непосредственно с инсулином.
Каталитический центр тирозинкиназной активности находится на внутриклеточном домене находится β-субъединиц.
Взаимодействие инсулина с α-субъединицами рецептора приводит к фосфорилированию β-субъединиц рецептора, в таком состоянии они способны фосфорилировать другие внутриклеточные белки, изменяя тем самым их функциональную активность.
Рецепторы, сопряженные с ионными каналами, являются интегральными мембранными белками, состоящими из нескольких субъединиц. Они действуют одновременно как ионные каналы и как рецепторы, которые способны специфически связывать с внешней стороны эффектор, изменяющий их ионную проводимость. Эффекторами такого типа могут быть гормоны (например, инсулин) и нейромедиаторы (ацетилхолин и др.).
22.Способы регуляции синтеза гормонов периферическими эндокринными железами. Роль либеринов, статинов, тропных гормонов гипофиза. ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов поступают в переднюю долю гипофиза, где стимулируют (либерины) или ингибируют (статины) синтез тропных гормонов гипофиза. Другие (окситоцин, вазопрессин) поступают через аксоны нервных клеток в заднюю долю гипофиза, где они хранятся и секретируются в кровь в ответ на соответствующие сигналы. В настоящее время известно 7 либеринов и 3 статина.
По химическому строению гормоны гипоталамуса являются низкомолекулярными пептидами. Они освобождают тропные гормоны гипофиза через аденилатциклазный механизм и быстро инактивируются в крови (время полужизни 2-4 мин). Синтез и секреция гормонов гипоталамуса подавляется гормонами эндокринных периферических желёз по принципу отрицательной обратной связи.
Гормоны гипофиза
В передней доле гипофиза (аденогипофизе) синтезируются тропные гормоны, стимулирующие синтез и секрецию гормонов периферических эндокринных желёз. По химическому строению гормоны гипофиза являются пептидами или гликопротеинами.
Кортикотропин (АКТГ, адренокортикотропный гормон). Полипептид из 39 аминокислотных остатков. Стимулирует синтез и секрецию гормонов коры надпочечников путем активации превращения холестерола в прегненолон. Мишенями действия АКТГ являются также клетки жировой ткани (активация липолиза) и клетки нейрогипофиза (активация образования меланотропинов).
Тиреотропин (ТТГ, тиреотропный гормон). Гликопротеид, состоящий из двух субъединиц. Стимулирует синтез и секрецию йодтиронинов (Т3 и Т4) в щитовидной железе:
- ускоряет поглощение йода из крови;
- увеличивает включение йода в тиреоглобулин;
- ускоряет протеолиз тиреоглобулина, т. е. высвобождение Т3 и Т4 и их секрецию.
Пролактин (лактотропный гормон). Белок, состоящий из 199 аминокислотных остатков. Стимулирует развитие молочных желёз и лактацию, стимулирует секрецию желтого тела и материнский инстинкт. В жировой ткани пролактин активирует липогенез (синтез триацилглицеролов).
Фоллитропин (фоликулостимулирующий гормон) и лютропин (лютеинизирующий гормон) Образуют группу гонадотропных гормонов. Оба гормона являются гликопротеидами, состоят из двух субъединиц. Фоллитропин регулирует созревание фолликулов у женщин и сперматогенез у мужчин. Лютропин стимулирует секрецию эстрогенов и прогестерона, созревание фолликула, овуляцию и образование желтого тела у женщин; стимулирует образование тестостерона и рост интерстициальных клеток в семенниках у мужчин.
Соматотропин (СТГ, соматотропный гормон) – гормон роста. Пептид, состоящий из 191 аминокислотного остатка. Единственный гормон, обладающий видовой специфичностью.
Рецепторы гормона роста находятся в плазматической мембране клеток печени, жировой ткани, скелетных мышцах, хрящевой ткани, мозге, легких, поджелудочной железе, кишечнике, сердце, почках.
Основное действие соматотропина – ростстимулирующее.
1) Регуляция обмена белков и процессов, связанных с ростом и развитием организма:
- стимулирование синтеза белка в костях, хрящах, мышцах и других внутренних органах;
- усиление транспорта аминокислот в клетки мышц;
- увеличение общего количества РНК, ДНК и общего количества клеток;
- увеличение ширины и толщины костей;
- ускорение роста соединительной ткани, мышц, внутренних органов.
2) Регуляция обмена липидов:
- усиление липолиза в жировой ткани;
- увеличение концентрации жирных кислот в крови;
- активация β-окисления в клетках (выделяющаяся энергия используется на анаболические процессы);
- увеличение содержания кетоновых тел в крови (при недостаточности инсулина).
3) Регуляция обмена углеводов:
- увеличение содержания гликогена в мышцах;
- активация глюконеогенеза в печени и повышение уровня глюкозы в крови (диабетогенный эффект).
Под влиянием различных факторов (стресс, физические упражнения, голодание, белковая пища) уровень гормона роста может возрастать даже у нерастущих взрослых людей.
Гиперсекреция соматотропина (при опухолях клеток гипофиза):
· у детей и подростков – гигантизм – пропорциональное увеличение костей, мягких тканей и органов, высокий рост;
· у взрослых – акромегалия – диспропорциональное увеличение размеров лица, черепа, кистей рук, стоп, увеличение размеров внутренних органов;
· соматотропный диабет – в крови повышается концентрация глюкозы (гипергликемия).
Гипосекреция соматотропина (при врожденном недоразвитии гипофиза) – нанизм или карликовость – пропорциональное недоразвитие всего тела, низкий рост, отклонений в развитии психической деятельности не наблюдается.
β - липотропин содержит 93 аминокислотных остатка. Он является предшественником природных опиатов эндофинов.β-липотропин оказывает липолитическое действие.
В промежуточной доле гипофиза синтезируется меланоцитстимулирующий гормон.Этот гормон стимулирует биосинтез кожного пигмента меланина.
В задней доле гипофиза накапливаются в гранулах и секретируются в кровь вазопрессин и окситоцин. Это цикличесие пептиды, состоящие из девяти аминокислотных остатков.
Вазопрессин (АДГ, антидиуретический гормон) синтезируется в супраоптическом ядре гипоталамуса. Вазопрессин контролирует осмотическое давление плазмы крови и водный баланс организма человека. Основное биологическое действие гормона заключается в повышении реабсорбции воды в дистальных канальцах и собирательных трубочках почек (антидиуретическое действие). Кроме этого вазопрессин стимулирует сокращение гладких мышечных волокон сосудов и сужение просвета сосудов, что сопровождается повышением артериального давления. При недостатке вазопрессина развивается несахарный диабет – заболевание, характеризующееся выделением 4-10 л мочи низкой плотности в сутки (полиурия) и жаждой. В отличие от сахарного диабета отсутствует глюкозурия.
Окситоцин синтезируется в паравентрикулярном ядре гипоталамуса. Биологическое действие гормона:
- стимулирует сокращение гладких мышц матки (используется для стимуляции родов);
- усиливает синтез белка в молочной железе и секрецию молока (за счет сокращения мышечных волокон вокруг альвеол молочных желёз).
Дата добавления: 2015-11-26; просмотров: 128 | Нарушение авторских прав