Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Результаты поиска по годам

Читайте также:
  1. XII. ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ РЕАЛИЗАЦИИ СТРАТЕГИИ
  2. А вот и результаты
  3. Алгоритм поиска подстроки Кнута-Морриса-Пратта (на основе префикс-функции)
  4. Алгоритм поиска подстроки, основанный на конечных автоматах
  5. Антропный принцип. Эффект наблюдательной селекции. Результаты Бострома и Тегмарка
  6. В поисках Знатока
  7. В ПОИСКАХ ЛУЧШЕГО ПУТИ
Год Количество патентов
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 


Результаты поиска по странам

Страна Количество патентов
Япония  
Германия  
России  

 

 

Заключения

Поиск выявил 83 патента сходных по технологии с объектом исследования

Предварительный поиск показал, что патентование в данной области идет неравномерно с 1996 года. Пик патентования пришелся на 2010 год. Количество патентов с каждым годом увеличивается, что сопоставимо с общим развитием технологий и науки.

Наибольший интерес из компаний представляет собой немецкая ZEISS CARL SURGICAL GMBH, занимающаяся развитием данных технологий и ведущая активное патентование в этой области на протяжении последних лет.

Стоит отметить, что оптическая когерентная томография тканей человека, это крайне перспективная технология. Нынешняя тенденция развития ярко демонстрирует нам, что с каждым годом оптическая томография становится все популярнее и популярнее. В ближайшие годы ожидается всплеск данной технологии.


Приложение

Optical Coherence Tomography of Human Biotissues
PRA-0085

Full Title
Optical Coherence Tomography of Human Biotissues

Tech Area / Field

PHY-OPL: Physics / Optics and Lasers

BIO-PAB: Biotechnology and Life Sciences / Public Health

INS-MEA: Instrumentation / Measuring Instruments

Brief Description of Technology
Optical imaging of biological microstructures within tissue interiors is a challenging and medically important scientific problem. Radiation in the “therapeutic window” (0.6 - 1.3 mm) is ideal for non-invasive optical monitoring, plus detection of biological objects and tissues owing to minimal tissue absorption. Nonetheless, the use of traditional methods of transillumination for biological imaging employing continuous wave or long pulsewidth sources of coherent radiation is ineffective due to multiple light scattering with tissue and poor spatial resolution, resulting in poor image quality and spatial smearing of even coarse (> 1 mm) features.

Optical coherence tomography (OCT) is a relatively new coherence-domain technique for optical imaging of biological tissues. Pioneered by Fujimoto and coworkers, as well as others within the past five years, OCT is now widely recognized as a very promising tool for providing non-invasive clinical diagnostic information of eye structures, skin, internal organs and other tissues. Based on low-coherence reflectometry, OCT provides high spatial resolution (~10 mm) while allowing for two- and three-dimensional images of the internal structures of biotissue without solving an image reconstruction problem. OCT enables one to follow the pulse-to-pulse kinetics of laser interactions with turbid biological tissues. An advantage of OCT in these investigations is the possibility to follow the transformations of not only surface layers, but also inner layers that are hidden from usual optical observation. The state-of-the-art in OCT development is described by J.Izatt in the May 1997 issue of Optics and Photonics News. The Nizhny Novgorod research team is widely recognized to be among leading groups in OCT development. The following world-class achievements can be mentioned:
— invention and implementation of fast piezo-optic, in-depth scanning (Russian patent granted, US patent pending)
— creation of a compact OCT device, with a flexible fiber cable, based on unique self-made polarization-maintaining (PM) single-mode fiber elements
— creation of a dual-wavelength OCT device for simultaneous biotissue imaging
— world first in vitro and in vivo observation of OCT images of mucous membranes
— observation of pulse-to-pulse kinetics of ablation crater growth during irradiation of cataracted lens by mid-infrared laser.

Legal Aspects
A Russian patent for a fast piezo-optical in-depth scanner and low coherence interferometer with such a scanner was granted (priority date 1 Mar 1995); US patent pending, PCT application submitted (covering Europe and Japan) and preliminary international expertise has been carried out.

Special Facilities in Use and Their Specifications
A unique OCT device designed and produced by the applicant group monitors biotissues in laboratory and clinical environments. An optical workshop produces unique, polished fiber optic elements with record parameters.

Scientific Papers
A.Sergeev, V.Gelikonov, G.Gelikonov, F.Feldchtein, et.al. “In Vivo Optical Coherence Tomography Of Human Skin Microstructure In Biomedical optoelectronic devices and systems II,” Proc. SPIE 2328, p.144 (1994).

V.M.Gelikonov, G.V.Gelikonov,R.V.Kuranov, K.I.Pravdenko, A.M.Sergeev, F.I.Fel’dstein, Ya.I.Khanin, D.V.Shabanov, N.D.Gladkova, N.K.Nikulin, G.A.Petrova, and V.V.Pochinco. Coherent optical tomography of microscopic inhomogeneities in biological tissues. Piz’ma Zh. Eksp. Teor. Fiz. 61, No.2, pp.149-153 (1995).

A.Sergeev, V.Gelikonov, V.Gelikonov, F.Feldchtein, et al, “High-spatial resolution optical-coherence tomography of human skin and mucous membranes,” in: CLEO’95 Technical Digest, p.349 (1995).

Sergeev A.M., Gelikonov V.M., Gelikonov G.V., Feldchtein F.I., Gladkova N.D., Kamensky V.A., “Biomedical diagnostics using optical coherence tomography,” OSA TOPS on Advances in Optical Imaging and Photon Migration, v.2, p.196-199 (1996).

Gelikonov V.M., Sergeev A.M., Gelikonov G.V., Feldchtein F.I., Gladkova N.D., Ioannovich J., Fragia K., Pirza T, “Compact fast-scanning OCT device for in vivo biotissue imaging,” Conference on Lasers and Electro-optics, OSA Technical digest series, v.16, p.58 (1996).

F.Feldchtein, V.Gelikonov, G.Gelikonov, N.Gladkova, V.Leonov, A.Sergeev, “Optical fiber interferometer and piezoelectric modulator,” International application PCT/RU96/00045 (1995).

G.Gelikonov, V.Gelikonov, F.Feldchtein, J.Stepanov, A.Sergeev, I.Antoniou, J Ioannovich, D.Reitze, W.Dawson, “Two-Color-in-One-Interferometer OCT System for Bioimaging,” CLEO’97 Technical Digest, p.210 (1997).

V. Kamensky, V.Gelikonov, G.Gelikonov, F.Feldchtein, A.Sergeev, K.Pravdenko, N.Artemiev, N.Bityurin, I.Skripachev, A.Pushkin, G. Snopatin, “In situ monitoring of the middle IR laser ablation of cataract-suffered human lens by optical coherent tomography,” Proc. SPIE, v.2930, p.222 (1996).

V. Kamensky, V.Gelikonov, G.Gelikonov, F.Feldchtein, A.Sergeev, K.Pravdenko, N.Artemiev, N.Bityurin, I.Skripachev, G. Snopatin, “YAG:Er laser system for microsurgery treatment of cataract-suffered human lens,” Proc. SPIE, v.3091, paper 19 (1997).

V. Kamensky, F. Feldchtein, K. Pravdenko, V. Gelikonov, G. Gelikonov, A. Sergeev, and N. Bityurin, “Monitoring and animation of laser ablation process in cataracted eye lens using coherence tomography,” Proc. SPIE (in press).

 

 


Дата добавления: 2015-10-29; просмотров: 57 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ZEISS CARL SURGICAL GMBH| What are the benefits from Copyright protection for developing countries?

mybiblioteka.su - 2015-2024 год. (0.006 сек.)