Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Тест 1. Расчет подповерхностного освещения методом однократного рассеяния

Читайте также:
  1. I. Передача параметров запроса методом GET.
  2. Алгоритм вычисления стандартизованных показателей обратным методом
  3. Алгоритм расчета налоговой базы
  4. Алгоритмы расчета физических величин по показаниям датчиков Линейное энерговыделение
  5. Бухгалтерский учет международных расчетов посредством банковского перевода
  6. Бухгалтерский учет расчетов платежными требованиями 1 страница
  7. Бухгалтерский учет расчетов платежными требованиями 2 страница

Описание сцены:

 


top - side - bottom, g = - 0.9 (анизотропное рассеяние назад)

 


top - side - bottom, g = 0 (изотропное рассеяние)

 


top - side - bottom, g = 0.9 (анизотропное рассеяние вперед)

Выводы:

1. Анизотропия. Для рассеяния вперед (g = 0.9) существенный световой поток (красное пятно) выходит через нижнюю грань образца, и в меньшей степени по сравнению с другими типами анизотропии рассеяния - сверху (желтое пятно). Для рассеяния назад и изотропного рассеяния снизу свет не выходит (выходит значительно меньше), зато через верхнюю грань световой поток сильнее (белые пятна), чем при рассеянии вперед.

2. Однократное рассеяние происходит не только в пределах длины одного среднего свободного пробега, а по всей глубине материала, но с разной вероятностью. Чем больше глубина, тем меньше вероятность однократного рассеяния, или, что тождественно, чем больше глубина, тем меньше количество однократных рассеяний.

Как видно из рендеров, величина g влияет на вероятность однократного рассеяния в зависимости от глубины. При g = 0 глубина рассеяний максимальна - однократные рассеяния происходят на бОльшей глубине и их больше по количеству, при g = - 0.9 = 0.9 - минимальна и практически идентична как для рассеяния вперед, так и для рассеяния назад.

3. Высокая зависимость от положения камеры

 


слева-направо: камера под углом 90, 45 и 35 градусов к нижней грани

Как видно из рендеров, при изменении положения камеры всего на 10 градусов видимость светового выхода через нижнюю грань полностью исчезла. Это свойство проявляется только для анизотропного рассеяния и его нужно учитывать при настройке положения камеры в сцене.

4. Отражение Фреснеля.

 

Для материала с g = 0.9 (рассеяние вперед) отражение поверхности (камера под углом 45 градусов сверху над образцом) демонстрирует закон Фреснеля. Дальняя часть эллипса светлее из-за того, что угол зрения относительно поверхности меньше для дальней части эллипса и больше для передней части эллипса. Свойства отражения для образца отключены - для слота material назначен черный цвет.

5. Расчет методом однократных рассеяний требует высоких значений интенсивности источников света. Если интенсивность источника недостаточна, результат расчетов будет просто нулевым ("черный" рендер).


Дата добавления: 2015-10-28; просмотров: 77 | Нарушение авторских прав


Читайте в этой же книге: Настройка фотонных карт | Интерфейс настройки фотонных карт в mr 3.3 для 3ds max | Final Gathering | Свойства и использование Ambient/Reflective Ocllusion | Физическая модель подповерхностного рассеяния в mental ray – SSS Physical Material | Часть 4. Упрощенная модель подповерхностного рассеяния SSS Fast | Материал miss_fast_simple_phen | Шейдеры группы miss_fast | Создание собственных материалов SSS Fast | Запекание с mental ray |
<== предыдущая страница | следующая страница ==>
Шейдер miss_physical| Тест 5. Текстурные трехмерные карты для коэффициента рассеяния

mybiblioteka.su - 2015-2024 год. (0.006 сек.)