Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

The evolution problem: couldn’t all of this have happened in the dark?

Читайте также:
  1. AMERICAN REVOLUTION
  2. Chapter Fifteen What Had Happened in Surrey
  3. Click here for a graphic showing what happened
  4. CUTTING EVOLUTION DOWN TO OUR SIZE
  5. Environmental Hazards of the Computer Revolution
  6. Environmental Hazards of the Computer Revolution
  7. Evidences of the occurrence of evolution

The Evolution Problem is one of the most difficult problems for a theory of consciousness. Why, and in what sense, was it necessary to develop something like consciousness in the nervous systems of animals? Couldn’t zombies have evolved instead? Here, the answer is both yes and no.

As I noted in the Introduction, conscious experience is not an all-ornothing phenomenon; it comes in many shades and flavors. There is a long history of consciousness on this planet. We have strong, converging evidence that all of Earth’s warm-blooded vertebrates (and probably certain other creatures) enjoy phenomenal experience. The basic brain features of sensory consciousness are preserved among mammals and exhibit strong homologies due to common ancestry. They may not have language and conceptual thought, but it is likely that they all have sensations and emotions. They are clearly able to suffer. But since they do all this without verbal reports, it is almost impossible to investigate this issue more deeply. What we must understand is how Homo sapiens managed to acquire — over the course of our biological history and individually as infants — this amazing property of living our lives in the Ego Tunnel successfully and without realizing it.

First, let’s not forget that evolution is driven by chance, does not pursue a goal, and achieved what we now consider the continuous optimization of nervous systems in a blind process of hereditary variation and selection. It is incorrect to assume that evolution had to invent consciousness — in principle it could have been a useless by-product. No necessity was involved. Not everything is an adaptation, and even adaptations are not optimally designed, because natural selection can act only on what is already there. Other routes and solutions were and remain possible. Nevertheless, a lot of what happened in our brains and in those of our ancestors clearly was adaptive and had survival value.

Today, we have a long list of potential candidate functions of consciousness: Among them are the emergence of intrinsically motivating states, the enhancement of social coordination, a strategy for improving the internal selection and resource allocation in brains that got too complex to regulate themselves, the modification and interrogation of goal hierarchies and long-term plans, retrieval of episodes from longterm memory, construction of storable representations, flexibility and sophistication of behavioral control, mind reading and behavior prediction in social interaction, conflict resolution and troubleshooting, creating a densely integrated representation of reality as a whole, setting a context, learning in a single step, and so on. It is hard to believe that consciousness should have none of these functions. Consider one example only.

There is a consensus among many leading figures in the consciousness community that at least one of the central functions of phenomenal experience is making information “globally available” to an organism. Bernard Baars’s global-workspace metaphor has a functional aspect: Put simply, this theory says that conscious information is that subset of active information in the brain that requires monitoring because it’s not clear which of your mental capacities you will need to access this information next. Will you need to direct focal attention at it? Will you need to form a concept of it, to think about it, to report it to other human beings? Will you need to make a flexible behavioral response — one that you have selected and weighed against alternatives? Will you need to link this information to episodic memory, perhaps in order to compare it with things you have seen or heard before? Part of Baars’s idea is that you become conscious of something only when you don’t know which of the tools in your mental toolbox you’ll have to use next.

Note that when you learn a difficult task for the first time, such as tying your shoes or riding a bicycle, your practicing is always conscious. It requires attention, and it takes up many of your resources. Yet as soon as you’ve mastered tying your shoes or riding a bicycle, you forget all about the learning process — to the point that it becomes difficult to teach the skill to your children. It quickly sinks below the threshold of awareness and becomes a fast and efficient subroutine. But whenever the system is confronted with a novel or challenging stimulus, its global workspace is activated and represented in consciousness. This is also the point when you become aware of the process.

Of course, a much more differentiated theory is needed, because there are degrees of availability. Some things in life, such as the ineffable shade of Green No. 25, are available for attention, say, but not for memory or conceptual thought. Other things are available for selective motor control but are accessed so quickly you don’t really attend to them: If 100-yard sprinters were to wait until they consciously heard the starter’s shot, they would already have lost the race; fortunately, their body hears it before they do. There are many degrees of conscious experience, and the closer science looks, the more blurry the border between conscious and unconscious processing becomes. But the general notion of global availability allows us to tell a convincing story about the evolution of consciousness. Here is my part of the story: Consciousness is a new kind of organ.

Biological organisms evolved two different kinds of organs. One kind, such as the liver or the heart, forms part of an organism’s “hardware.” Organs of this type are permanently realized. Then there are “virtual organs” — feelings (courage, anger, desire) and the phenomenal experience of seeing colored objects or hearing music or having a certain episodic memory. The immune response, which is realized only when needed, is another example of a virtual organ: For a certain time, it creates special causal properties, has a certain function, and does a job for the organism. When the job is done, it disappears. Virtual organs are like physical organs in that they fulfill a specific function; they are coherent assemblies of functional properties that allow you to do new things. Though part of a behavioral repertoire on the macro level of observable traits, they can also be seen as composed of billions of concerted microevents — immune cells or neurons firing away. Unlike a liver or a heart, they are realized transiently. What we subjectively experience are the processes brought about by the ongoing activity of one or many of such virtual organs.

Our virtual organs make information globally available to us, allowing us to access new facts and sometimes entirely new forms of knowledge. Take as an example the fact that you are holding this book in your hands right now. The phenomenal book (i.e., the conscious book-experience) and the phenomenal hands (i.e., the conscious experience of certain parts of a bodily self) are examples of currently active virtual organs. The neural correlates in your brain work for you as object emulators, internally simulating the book you are holding, without your being aware of the fact. The same is true of the conscious hand-experience, which is part of the bodily subject emulator. The brain is also making other facts available to you: the fact that this book exists, that it has certain invariant surface properties, a certain weight, and so on. As soon as all this information about the existence and properties of the book becomes conscious, it is available for the guidance of attention, for further cognitive processing, for flexible behavior.

Now we can begin to see what the central evolutionary function of consciousness must have been: It makes classes of facts globally available for an organism and thereby allows it to attend to them, to think about them, and to react to them in a flexible manner that automatically takes the overall context into account. Only if a world appears to you in the first place can you begin to grasp the fact that an outside reality exists. This is the necessary precondition for discovering the fact that you exist as well. Only if you have a consciousness tunnel can you realize that you are part of this reality and are present in it right now. Moreover, as soon as this global stage — the consciousness tunnel — has been stabilized, many other types of virtual organs can be generated and begin their dance in your nervous system. Consciousness is an inherently biological phenomenon, and the tunnel is what holds it all together. Within the tunnel, the choreography of your subjective life begins to unfold. You can experience conscious emotions and thereby discover that you have certain goals and needs. You can apprehend yourself as a thinker of thoughts. You can discover that there are other people — other agents — in the environment and learn about your relationship to them; unless a certain type of conscious experience makes this fact globally available to you, you cannot cooperate with them, selectively imitate them, or learn from them in other ways. If you are smart, you may even begin to control their behavior by controlling their conscious states. If you successfully deceive them — if, say, you manage to install a false belief in their minds — then you have activated a virtual organ in another brain.

Phenomenal states are neurocomputational organs that make survivalrelevant information globally available within a window of presence. They let you become aware of new facts within a unified psychological moment. Clearly, being able to use all the tools in your mental toolbox to react to new classes of facts must have been a major adaptive advantage. Every new virtual organ, every new sensory experience, every new conscious thought had a metabolic price; it was costly to activate them, if only for a couple of seconds or minutes at a time. But since they paid for themselves in terms of additional glucose, and in terms of security, survival, and procreation, they spread across populations and sustain themselves to this day. They allowed us to discriminate between what we can eat and what we can’t, to search for and detect novel sources of food, to plan our attack on our prey. They allowed us to read other people’s minds and cooperate more efficiently with our fellow hunters. Finally, they allowed us to learn from past experience.

The interim conclusion is that making a world appear in an organism’s brain was a new computational strategy. Flagging the dangerous present world as real kept us from getting lost in our memories and our fantasies. Flagging the present enables a conscious organism to plan different and more efficient ways of escape or of deceiving or stalking its prey, namely by comparing internal dry runs of the target behavior with the features of a given world. If you have a conscious, transparent world-model, you can, for the first time, directly compare what is actual with what is only possible, the actual world with simulated possible worlds you’ve designed in your mind. High-level intelligence means not only having offline states in which you can simulate potential threats or desired outcomes but also comparing the real situation with a number of possible goal-states. After you have found a path from the real world into the most desirable possible world in your mind, you can begin to act.

It is easy to overlook the causal relevance of this first evolutionary step, the fundamental computational goal of conscious experience. It is the one necessary functional property on which everything else rests. We can simply call it “reality generation”: It allowed animals to represent explicitly the fact that something is actually the case. A transparent world-model lets you discover that something is really out there, and by integrating your portrait of the world with the subjective Now, it lets you grasp the fact that the world is present. This step opened up a new level of complexity. Thus, having a global world-model is a new way of processing information about the world in a highly integrated manner. Every conscious thought, every bodily sensation, every sound and every sight, every experience of empathy or of sharing the goals of another human being makes a different class of facts available for the adaptive, flexible, and selective form of processing that only conscious experience can provide. Whatever is elevated to the level of global availability suddenly becomes more fluid and more context-sensitive and is directly related to all other contents of your conscious mind.

The functions of global availability can be specific: Conscious color vision gives you information about nutritional value, as when you notice the luscious red berries among the green leaves. The conscious experience of empathy provides you with a nonlinguistic form of knowledge about the emotional states of a fellow human being. Once you have this form of awareness, you can attend to it, adapt your motor behavior to it, and associate it with memories of the past. Phenomenal states do not just represent facts about berries or about the feelings of other human beings; they also bind these things into a global processing stage and allow you to use all your mental capacities to explore them further. In short, individual conscious experiences from the object level upward are virtual organs that transiently make knowledge available to you in an entirely new data format — the consciousness tunnel. And your unified global model of a single world provides a holistic frame of reference in which all this can take place.

If a creature such as Homo sapiens evolves the additional ability to run offline simulations in its mind, then it can represent possible worlds — worlds that are not experienced as present. This species can have episodic memory. It can develop the ability to plan. It can ask itself, “How would a world look in which I had many children? What would the world be like if I were perfectly healthy? Or if I were rich and famous? And how can I make these things happen? Can I imagine a path leading from the present world into this imagined world?”

Such a being can also enjoy mental time travel, because it can switch back and forth between “inside-time” and “outside-time.” It can compare present experiences to past ones — but it can also hallucinate or get lost in its own daydreams. If it wants to use these new mental abilities properly, its brain must come up with a robust and reliable way to tell the difference between representation and simulation. The being must stay anchored in the real world; if you lose yourself in daydreams, sooner or later another animal will come along and eat you. Therefore, you need a mechanism that reliably shows you the difference between the one real world and the many possible ones. And this trick must be achieved on the level of conscious experience itself, which is not an easy problem. As I discussed, conscious experience already is a simulation and never brings the subject of experience — you — into direct contact with reality. So the question is, How can you avoid getting lost in the labyrinth of your conscious mind?

A major function of the transparent conscious model of reality is to represent facticity — that is, to generate a rock-bottom frame of reference for the organism using it: something that unfailingly defines what is real (even if it isn’t); something you cannot fool around or tamper with. Transparency solved the problem of simulating a multitude of possible inner worlds without getting lost in them; it did so by allowing biological organisms to represent explicitly that one of those worlds is an actual reality. I call this the “world-zero hypothesis.”

Human beings know that some of their conscious experiences do not refer to the real world but are only representations in their minds. Now we can see how fundamental this step was, and we can recognize its functional value. Not only were we able to have conscious thoughts, but we could also experience them as thoughts, rather than hallucinating or getting lost in a fantasy. This step allowed us to become superbly intelligent. It let us compare our memories and goals and plans with our present situation, and it helped us seek mental bridges from the present to a more desirable reality.

The distinction between things that only appear to us and real, objective facts became an element of our lived reality. (Please note that this is probably not true of most other animals on this planet.) By consciously experiencing some elements of our tunnel as mere images or thoughts about the world, we became aware of the possibility of misrepresentation. We understood that sometimes we can be wrong, since reality is only a specific type of appearance. As evolved representational systems, we could now represent one of the most important facts about ourselves — namely, that we are representational systems. We were able to grasp the notions of truth and falsity, of knowledge and illusion. As soon as we had grasped this distinction, cultural evolution exploded, because we became ever more intelligent by systematically increasing knowledge and minimizing illusion.

The discovery of the appearance/reality distinction was possible because we realized that some of the content of our conscious minds is constructed internally and because we could introspectively apprehend the construction process. The technical term here would be phenomenal opacity — the opposite of transparency. Those things in the evolution of consciousness that are old, ultrafast, and extremely reliable — such as the qualities of sensory experience — are transparent; abstract conscious thought is not. From an evolutionary perspective, thinking is very new, quite unreliable (as we all know), and so slow that we can actually observe it going on in our brains. In conscious reasoning, we witness the formation of thoughts; some processing stages are available for introspective attention. Therefore, we know that our thoughts are not given but made.

The inner appearance of a fully realistic world, as present in the here and now, was an elegant way of creating a frame of reference and a reliable anchor for all those kinds of mental activity necessary for higher forms of intelligence. You can grasp and design possible worlds only if a robust first-order reality is already in place. That was the fundamental breakthrough — as well as the central function of consciousness as such. As it turned out, the consciousness tunnel possessed obvious survival value and was adaptive because it supplied a unified and robust frame of reference for higher levels of reality-modeling. Nevertheless, all this is not even half the story: We need to take one last step up the ladder, a big one. Our brief tour d’horizon concludes with the deepest and most difficult puzzle of all: the subjectivity of consciousness.


Дата добавления: 2015-10-31; просмотров: 139 | Нарушение авторских прав


Читайте в этой же книге: A Note on the Footnotes | ACKNOWLEDGMENTS | THE PHENOMENAL SELF-MODEL | THE APPEARANCE OF A WORLD | THE ONE-WORLD PROBLEM: THE UNITY OF CONSCIOUSNESS | THE NOW PROBLEM: A LIVED MOMENT EMERGES | THE REALITY PROBLEM: HOW YOU WERE BORN AS A NAIVE REALIST | THE UNITY OF CONSCIOUSNESS: A CONVERSATION WITH WOLF SINGER | OUT OF THE BODY AND INTO THE MIND | THE OUT-OF-BODY EXPERIENCE |
<== предыдущая страница | следующая страница ==>
THE INEFFABILITY PROBLEM: WHAT WE WILL NEVER BE ABLE TO TALK ABOUT| THE WHO PROBLEM: WHAT IS THE ENTITY THAT HAS CONSCIOUS EXPERIENCE?

mybiblioteka.su - 2015-2024 год. (0.007 сек.)