Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Порядок построения теоретической кривой.

Читайте также:
  1. II. Информация об услугах, порядок оформления
  2. II. Информация об услугах, порядок оформления проживания в гостинице и оплаты услуг
  3. II. Порядок и условия проведения конкурса
  4. II. Порядок расчета платы за коммунальные услуги
  5. II. Условия и порядок проведения фестиваля.
  6. III. Порядок предоставления услуг
  7. III. Сроки и порядок проведения Конкурса

 

Статистический метод с применением закона Гаусса позволяет на основе выборки (например, N=20-50 штук и более) прогнозировать точность обработки всей обрабатываемой партии деталей.

Графическая иллюстрация закона нормального распределения (закона Гаусса) представлено выше, а его математическое выражение характеризуется зависимостью

где Ф (x) - плотность вероятности

x - переменная (случайная) величина;

- среднеарифметическое отклонение (центр группирования);

- среднеквадратичное отклонение случайной величины xi от x;

e - основание натурального логарифма;

Положение кривой относительно начала координат и ее форма определяются в основном двумя параметрами x и , которые являются первыми из пяти статистических характеристик.

Среднее арифметическое

среднее-квадратичное отклонение

 

коэффициент вариации, характеризующий нестабильность исследуемого технологического процесса.

коэффициент относительной ассиметрии, характеризующий тенденцию к смещению центра группирования влево () или вправо (),

коэффициент эксцесса, характеризующий тенденцию кривой распределения к смещению вверх () или вниз () вдоль оси ординат

.

При анализе технологических процессов (ТП) или отдельных операций, указанные характеристики по данным выборки (Nв=20...50) принимают за истинные характеристики всей партии обрабатываемых заготовок или собираемых изделий (узлов). Если же одна из первичных погрешностей преобладает над остальными (удельный вес ее значительно больше остальных), тогда будет иметь место другой закон распределения случайных величин.

Порядок расчета следующий.

На основе выборки () из всей партии обрабатываемых заготовок

(например, = 20 шт. x1 = 8,02; 8,03;...; 8,14) определяется диапазон рассеивания (размах).

R = Xmax - Xmin,

R = 8,14 - 8,02 = 0,12

который разбивается на кассы (интервалы), а их число определяется по правилу Штюргерса

K = 1 + 3,32 ln (Nв) ( принимается K= 6...10).

Размер одного интервала

C = R/K,

C = 0,12/6 = 0,02. (19)

В таблицу заносятся параметры интервалов, абсолютная частота (mi) появления контролируемого параметра в каждом из них и другие сведения.

Таблица значений распределения

Интервалы размеров от и до (включительно) Середина интервала, Хс Абсолютная частота,mi Относительная частота, ni=mi/Nв
8,02... 8,04 8,03   0,05
8,04... 8,06 8,05   0,2
8,06... 8,08 8,07   0,35
8,08... 8,10 8,09   0,25
8,10... 8,12 8,11   0,1
8,12... 8,14 8,13   0,05

 

Данные таблицы представляются в виде гистограммы или фактического распределения, а затем определяются основные статистические характеристики нормального закона распределения.

 
Рисунок 4.5 Гистограмма и фактическая кривая распределения

 

Для построения теоретической кривой распределения необходимо выделить «точки перегиба:

максимальную ординату

0,4/ ,

ординаты точек перегиба при X=+2 и X=-2

Y = 1/ е 0,242/ ,

Y = 1/ 0,054/ ,

а также теоретическое поле рассеивания при y=0

X =

Для приведения теоретической кривой к масштабу графика зависимости следует умножить на масштабный коффициент сNв, и затем и вычертить ее, совместив на одном графике фактическую кривую с теоретической.

После построения графиков необходимо в масштабе нанести на них верхнюю (ES) и нижнюю (EJ) границы поля допуска, что позволяет визуально оценить возможный процент брака для всей исследуемой партии.

 
Рисунок 4.6 Теоретическая кривая распределения.

 

Далее необходимо выполнить проверку гипотезы о нормальности распределени я, например, вычислением среднего абсолютного отклонения (САО).

САО = Xкрит. - /Nв,

где Xкрит - критическое (вызывающее сомнение) значение случайной величины Xi. В практических расчетах обычноограничиваются проверкой максимального и минимального значений из выборки.


Условие нормального распределения

в

В этом случае, если условие нормальности не выполняется, следует исключить из выборки Xкрит. и вновь произвести расчеты всех статистических характеристик , , , . Если и после второй проверки распределение не соответствует нормальному закону, необходимо дальнейшие расчеты прекратить.

Если условие нормальности подтверждается, необходимо перейти к вычислению процента возможного брака, если нет - ограничиться построением гистограммы.


Дата добавления: 2015-07-08; просмотров: 209 | Нарушение авторских прав


Читайте в этой же книге: Производственные методы оценки жесткости. | Износ определяет период стойкости режущего инструмента, а его величина зависит от характера технологической операции (черновой, получистовой или чистовой). | Погрешности от тепловых деформаций системы | Влияние геометрической точности станка на точность обработки | Расчет суммарной погрешности обработки. | Статическая настройка. | Динамическая настройка. | Диаграммы точности обработки | СТАТИСТИЧЕСКИЙ МЕТОД ОБЕСПЕЧЕНИЯ ТОЧНОСТИ МЕХАНИЧЕСКОЙ ОБРАБОТКИ И КАЧЕСТВА СБОРКИ | Точечные и точностные диаграммы. |
<== предыдущая страница | следующая страница ==>
Закон Гаусса.| Свойства нормального закона распределения.

mybiblioteka.su - 2015-2024 год. (0.013 сек.)