Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Штамповые стали. А. Для холодного деформирования: это штампы, пуансоны, накатные плашки и др

Читайте также:
  1. VII. Великая тайна Мити. Освистали
  2. Быстрорежущие стали и сплавы
  3. В 60-е годы в сельском хозяйстве стали использовать келейдед-минвралы.
  4. В зависимости от степени раскисления выплавляют спокойные, кипящие и полуспокойные стали.
  5. В начале 14века возникли новые центры летописания. С 1325г. летописи стали вестись и в Москве.
  6. Важными вехами в развитии гимнастики стали I Всесоюзная Спартакиада (1928) и первенство РККА по гимнастике в 1930 г.
  7. Василий Сталин. Взлет

А. Для холодного деформирования: это штампы, пуансоны, накатные плашки и др. Должны обладать высокой твердостью, прочностью, износостойкостью, вязкостью. При скоростном деформировании могут нагреваться до 200-350 0С. Применяют стали Х12Ф, Х12М, Х6ВФ, 6Х6В3МФС. После закалки делают средний отпуск 500 0С.

Б. Для горячего деформирования и пресс-форм литья под давлением.

Требования: прочность, вязкость, разгаростойкость, окалиностойкость, износостойкость, теплопроводность. Широко применяют Стали 5ХНМ, 5ХНВ для молотовых штампов. После закалки с 840-860 делают отпуск при 580 0С. Сохраняют высокие свойства при нагреве до 500-520 0С. Прессформы для машин литья под давлением делают из сталей 4Х5В2ФС – для литья Al, Mg, Zn сплавов; 3Х2В8Ф – для литья медных сплавов. Закалка с 1100 0С в масло, отпуск при 650 0С.

 

 

Алюминиевые сплавы.

 

Алюминий и сплавы на его основе имеют широкое применение в машиностроении благодаря комплексу ценных физико-химических свойств: малой плотности, высокой тепло-, электропроводности, пластичности, коррозионной стойкости.

Чистый алюминий - серебристо-белый металл с температурой плавления 6600 С, плотностью 2710 кг/м3, имеет кристаллическую решетку ГЦК, полиморфных превращений не претерпевает. Высокая коррозионная стойкость алюминия обусловлена образованием на поверхности тонкой и плотной пленки окиси. Механическая прочность чистого алюминия невелика (80-100 МПа), поэтому он применяется в виде токоведущих изделий (провода, шины), конденсаторной и пищевой фольги, покрытий для зеркал, рефлекторов и др.

Основными примесями, попадающими в алюминий при его производстве, являются кремний и железо, но могут содержаться также медь, цинк, титан и др. Железо присутствует в структуре алюминия в форме химического соединения FeAl3, кремний соединений не образует, а его кристаллы имеют игольчатую форму.

Эти примеси ухудшают пластичность алюминия и часто нежелательны в сплавах. Относительное удлинение для алюминия, содержащего 0,005% примесей составляет 45%, при содержании примесей 1%- =25%.

Для повышения прочностных свойств в алюминий вводят легирующие элементы, наиболее распространенными из которых являются медь, цинк, кремний, магний, марганец, литий.

По технологическим свойствам и способам получения изделий алюминииевые сплавы подразделяются на три группы:

· деформируемые сплавы, не упрочняемые термической обработкой:

· деформируемые сплавы, упрочняемые термической обработкой;

· литейные сплавы.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д – сплавы типа дюралюминов; А – технический алюминий; АК – ковкие алюминиевые сплавы; В – высокопрочные сплавы; АЛ – литейные сплавы.

Далее указывается условный номер сплава. За условным номером следует обозначение, характеризующее состояние сплава: М – мягкий (отожженный); Т – термически обработанный (закалка плюс старение); Н – нагартованный; П – полунагартованный

Методами порошковой металлургии изготовляют спеченные алюминиевые сплавы (САС) испеченные алюминиевые порошковые сплавы (САП).

 

Деформируемые сплавы, не упрочняемые термической обработкой.

 

Прочность алюминия можно повысить легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем – АМц, с магнием – АМг; после обозначения элемента указывается его содержание (АМг3).

Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость.

Прочность сплавов повышается только в результате деформации в холодном состоянии. Чем больше степень деформации, тем значительнее растет прочность и снижается пластичность. В зависимости от степени упрочнения различают сплавы нагартованные и полунагартованные (АМг3П).

Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций.

 

Деформируемые сплавы, упрочняемые термической обработкой.

 

К таким сплавам относятся дюралюмины (сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

 

Литейные алюминиевые сплавы.

 

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 


Дата добавления: 2015-07-07; просмотров: 134 | Нарушение авторских прав


Читайте в этой же книге: Строение реальных металлов. Дефекты кристаллического строения | Кристаллизация металлов и сплавов | Аморфное состояние металлов | Общая теория сплавов. Диаграмма состояния. | Изменения структуры и свойств металлов при пластической деформации. Рекристаллизация | Основные свойства железа | Основные фазы, области, линии и точки диаграммы | Построение кривых охлаждения сплавов заданной концентрации с использованием диаграммы состояния | Теоретические сведения | Конструкционные стали |
<== предыдущая страница | следующая страница ==>
Жаропрочные стали и сплавы.| Медные сплавы

mybiblioteka.su - 2015-2024 год. (0.007 сек.)