Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Зубы. Строение и источник развития эмали.

Читайте также:
  1. I. Три периода развития
  2. II. IV. Построение фациальных и палеогеографических карт
  3. II. Корыстные источники информации
  4. II. Периоды физического развития
  5. III. Источники, вынуждаемые к сотрудничеству
  6. IX. Фазы развития чувства
  7. VIII. Фазы развития мышления

Зубы закладываются из 2 источников:
1. Эпителий ротовой полости – эмаль зуба.
2. Мезенхима – все остальные ткани зуба (дентин, цемент, пульпа, периодонт и параодонт).
На 6-й недели эмбриогенеза многослойный плоский неороговевающий эпителий на верхней и нижней челюстях утолщается в виде подковообразного тяжа – зубная пластинка. Эта зубная пластинка в дальнейшем погружается в подлежащую мезенхиму. На передней (губной) поверхности зубной пластинки появляются эпителиальные выпячивания – так называемые зубные почки. Со стороны нижней поверхности в зубную почку начинает вдавливаться уплотненная мезенхима в виде зубного сосочка. В результате этого эпителиальная зубная почка превращается в перевернутый 2-х стенный бокал или чащу, который называется эпителиальным эмалевым органом. Эмалевый орган и зубной сосочек вместе окружаются уплотненной мезенхимой – зубным мешочком.
Эпителиальный эмалевый орган вначале соединен тонким стебельком с зубной пластинкой.

Параллельно развитию дентина из мезенхимы зубного сосочка начинается дифференцировка и формирование пульпы: мезенхимные клетки превращаются в фибробласты и начинают выработку коллагеновых волокон и основного вещества пульпы.
Разрастание дентина и пульпы в области корня зуба обуславливает прорезывание зуба, так как зачаток зуба в области корня окружен формирующейся костной альвеолой, поэтому дентин и пульпа не могут разрастаться в этом направлении, в области корня поднимается тканевое давление и зуб вынужден выталкиваться, подниматься к поверхности эпителия ротовой полости, т.е. прорезываться.
Из внутренних слоев зубного мешочка в области корня образуется цемент зуба, а из наружных слоев зубного мешочка образуется зубная связка – периодонт.
На 5-ом месяце эмбрионального развития из оставшейся части зубной пластинки закладываются зачатки постоянных зубов.
Эмаль зуба – самая твердая ткань в человеческом организме, покрывает только коронку зуба. Эмаль состоит на 96-97% из неорганических веществ (фосфаты, карбонаты и фториды кальция), 3-4% составляет органические вещества (тоньчайшие фибриллы и склеивающая масса). Неорганические вещества образуют эмалевые призмы. Эмалевая призма – эсобразно изогнутая, многогранная призма из кристаллов солей кальция. Друг с другом эмалевые призмы связаны сетью тонких фибрилл и склеены склеивающим веществом. После прорезывания образованная из остатков погибших уплощенных наружных клеток эмалевого органа тонкая пленка – кутикула на жевательных поверхностях стирается. Зрелая эмаль инертна, не содержит клеток и поэтому неспособна к регенерации при повреждениях. Однако имеет место минимальный обмен ионами между эмалью и слюной, благодаря чему на поверхности эмали может происходить минимальное дополнительное обызвествление в виде пленки – пелликула. При недостаточно хорошем гигиеническом уходе за зубами на поверхности эмали образуется зубной налет – скопление микроорганизмов, продукты жизнедеятельности которых изменяет местную РН в кислую сторону, что в свою очередь обуславливает вымывание солей кольция, т.е. может стать началом кариеса. При отложении солей в очагах зубного налета образуются зубные камни.
Эмалевые пучки – это прослойка между эмалевыми призмами из необызвествленных органических веществ; имеются вблизи эмалево-дентиновой границе. Эмалевые пластинки – такие же прослойки, пронизывающие всю толщу эмали; их больше всего в области шейки зуба.
Дентин покрывает и коронку и корень зуба. Также как и эмаль состоит из неорганической части (70-72%) – солей кальция, и органической части (28-30%). Органическая часть вырабатывается одонтобластами и состоит из коллагеновых волокон и склеивающей массы (мукопротеины). Дентин пронизан радиально идущими канальцами, в которых располагаются отростки одонтобластов, безмякотные нервные волокна и тканевая жидкость, т.е. дентиновые канальцы играют большую роль в питании и иннервации дентина. Периферические слои (ближе к цементу и эмали) – обызвествленный плащевой дентин. Тела одонтобластов лежат в периферической части пульпы (на границе с дентином). Дентин может регенерировать, после повреждений образуется менее прочный II дентин (коллагеновые волокна располагаются беспорядочно). Иногода наблюдается эктопическое формирование дентина, например в пульпе – называются дентиклами. Причиной образования дентиклов считают нарушения обмена веществ, воспалительные процессы, гиповитаминозы. Дентиклы могут сдавливать кровеносные сосуды и нервные волокна пульпы.
Цемент по химическому составу и гистологическому строению близок к грубоволокнистой костной ткани. На 70% состоит из неорганических солей кальция, на 30% из органических веществ (коллагеновые волокна, аморфное основное вещество). В составе цемента имеются цементобласты и цементоциты, вырабатывающие коллагеновые волокна и основное вещество. Цементобласты и цементоциты располагаются ближе к верхушке корня зуба – это клеточный цемент; ближе к шейке и коронке зуба цементобласты и цементоциты отсутствуют – это бесклеточный цемент. Питание цемента происходит за счет сосудов периодонта, частично со стороны дентина.
Пульпа – мягкая ткань зуба, находится в пульпарной полости. Гистологически пульпа соответствует рыхлой волокнистой соединительной ткани с некоторыми особенностями:
- больше кровеносных сосудов; - больше нервных волокон и окончаний; - больше содержание макрофагов; - не содержит эластических волокон.
В периферической части пульпы (на границе с дентином) располагаются одонтобласты. Пульпа обеспечивает питание дентина и частично эмали и цемента, иннервацию зуба, защиту от микроорганизмов.

Загрузка...


В течении жизни развивается 2 смены зубов. Первая смена зубов называется выпадающими или молочными и служит в детстве. Всего выпадающих зубов 20 – по 10 в верхней и нижней челюсти. Выпадающие зубы функционируют в полном составе до 6 лет. С 6 лет до 12 лет выпадающие зубы постепенно сменяются на постоянные зубы. Набор постоянных зубов состоит из 32 зубов. Формула зубов такова: 1-2 – резцы, 3 – клык, 4-5 – премоляры, 6-7-8 – моляры.
Развитие постоянных зубов происходит также как и молочных зубов. Вначале молочные и постоянные зубы располагаются в одной костной альвеоле, позже между ними формируется костная перегородка. В возраст 6-12 лет зачаток постоянного зуба начинает расти и давит на костную перегородку, отделяющую его от молочного зуба; одновременно активируются остеокласты и разрушают костную перегородку и корень молочного зуба. В результате растущий постоянный зуб выталкивает оставшуюся коронку молочного зуба и прорезывается

 

2. Рецепторные нервные окончания. Функциональная и морфологическая классификация.

НЕРВНЫЕ ОКОНЧАНИЯ– это концевые аппараты, которыми заканчиваются нервные волокна.

КЛАССИФИКАЦИЯ

1Межнейрональные (синапсы).

2Эффекторные (двигательные или моторные).

3Рецепторные (аффекторные или чувствительные).

СИНАПСЫ – это структуры, предназначенные для передачи импульса с одного нейрона на другой и на мышечные или железистые клеточные структуры.

Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже­ний, возбуждения, выработки импульса и передачи его. Она является осно­вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре­дой.

Нервные клетки(нейроны, нейроциты) — основные струк­турные компоненты нервной ткани, выполняющие специфическую функ­цию.

Нейроглия(neuroglia) обеспечивает существование и функционирова­ние нервных клеток, осуществляя опорную, трофическую, разграничитель­ную, секреторную и защитную функции.

Нервные волокна заканчиваются концевыми аппаратами — нервными окончаниями. Различают 3 группы нервных оконча­ний: концевые аппараты, образующие межнейрональные синапсы и осуще­ствляющие связь нейронов между собой; эффекторные окончания (эффек­торы), передающие нервный импульс на ткани рабочего органа; рецепторные (аффекторные, или чувствительные).

Эффекторыые нервные окончания бывают двух типов — двигательные и секреторные.

Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической, или вегетативной, нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями. Они представляют собой окончания аксонов клеток двигательных ядер передних рогов спинного мозга или моторных ядер головного мозга. Нервно-мышеч­ное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна.

Двигательные нервные окончания в гладкой мышечной ткани представляют собой четкообразные утолщения (варикозы) нервно­го волокна, идущего среди неисчерченных гладких миоцитов.

Сходное строение имеют секреторные нервные окончания. Они представляют собой концевые утолщения терминалей или утолщения по ходу нервного волок­на, содержащие пресинаптические пузырьки, главным образом холинерги­ческие.

Рецепторные нервные окончания. Эти нервные окончания — рецепторы воспринимают различные раздражения как из внешней среды, так и от внутренних органов. Соответственно выделяют две большие группы рецеп­торов: экстерорецепторы и интерорецепторы. К экстерорецепторам (вне­шним) относятся слуховые, зрительные, обонятельные, вкусовые и осяза­тельные рецепторы. К интерорецепторам (внутренним) относятся висцерорецепторы (сигнализирующие о состоянии внутренних органов) и вестибулопроприорецепторы (рецепторы опорно-двигательного аппарата).

В зави­симости от специфичности раздражения, воспринимаемого данным видом рецептора, все чувствительные окончания делят на механорецепторы, барорецепторы, хеморецепторы, терморецепторы и др.

По особенностям строения чувствительные окончания подразделяют насвободные нервные окончания, т.е. состоящие толькоиз конечных ветвлений осевого цилиндра, и несвободные, содержащие в своем составе все компоненты нервного волокна, а именно ветвления осе­вого цилиндра и клетки глии.

Синапсы – это струтуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Сингапсы обеспечивают поляризацию проведения импульса по цепи нейронов. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротони­ческими).

Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ — нейромедиаторов, находя­щихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго ней­рона, или другой иннервируемой клетки, с которой она контактирует, — постсинаптическую часть. Область синаптического кон­такта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Электрические, или электротонические, синапсы в нервной системе мле­копитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями (кон­тактами), обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток.

 

3. Эндоцитоз. Экзоцитоз.

Эндоцито́з — процесс захвата (интернализации) внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз.

Эндоцитоз начинается с сорбции на пов-ти плазмолеммы поглощаемых в-в. Связывание их с плазмолеммой определяется наличием на её пов-сти рецепторных молекул. После сорбции в-в на пов-сти плазмолемма начинает образовывать сначала небольшие впячивания внутрь кл. Эти впячивания могут иметь вид пузырьков или представлять глубокие инвагинации, впячивания внутрь кл. Далее эти впячивания отшнуровываются от плазмолеммы и в виде пузырьков свободно располагаются под ней. Затем эндоцитозные пузырьки сливаются др. с др.

Экзоцитоз-выведение в-в из кл. В этом случае внутрикл. продукты( белки, мукополисахариды, липопротеиды), заключенные в вакуоли или пузырьки подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливается и содержимое вакуоли поступает в окруж.ср.

 

Билет 5

  1. Вены. Классификация. Источники развития, морфо-функциональная характеристика вен. Возрастные особенности.

Ве́на — кровеносный сосуд, по которому кровь движется к сердцу

1)Вены волокнистого типа. 2)Вены мышечного типа: со слабым, средним и сильным развитием мышечных элементов. Вены волокнистого типа. Отсутствует средняя оболочка. Вены мышечного типа. Со слабым развитием. Сопровождают артерии мышечного типа. Плохо выражен подэндотелиальный слой. В средней оболочке содержится небольшое количество мышечных клеток. Благодаря такому строению вены могут сильно расширяться и выполнять депонирующую функцию. В наружной оболочке встречаются единичные продольно направленные гладкие мышечные клетки. Со средним развитием. Внутренняя оболочка – эндотелиальные клетки, формирует клапанный аппарат. Подэндотелиальный слой состоит из соединительнотканных волокон вдоль сосуда. Внутренняя эластическая мембрана не выражена. На границе между внутренней и средней оболочками располагается сеть эластических волокон. Средняя оболочка состоит из пучков гладких миоцитов. Наружная эластическая мембрана отсутствует. Коллагеновые и эластические волокна направлены продольно. В наружной оболочке встречаются гладкие мышечные клетки. (Плечевая, верхняя полая). С сильным развитием. Внутренняя оболочка. Состоит из эндотелия и подэндотелиального слоя, образованного рыхлой волокнистой соединительной ткани, в которой залегают пучки гладких мышечных клеток. Формирует клапаны. Внутренняя эластическая мембрана отсутствует. Формирует клапаны, основу состовляет волокнистая соединительная ткань. Средняя оболочка. Содержит пучки циркульрно расположенных гладких мышечных клеток, окруженных коллагеновыми и эластическими волокнами. Выше основания клапана средняя оболочка истончается, создавая утолщение в стенке вены. В наружной оболочке образованной рыхлой волокнистой соединительной ткани, обнаруживаются пучки продольно расположенных гладких мышечных клеток, сосуды сосудов, нервные волокна. Возрастные изменения. К моменту рождения человека в средней оболочке бедренной и подкожных вен нижних конечностей имеются лишь пучки циркулярно ориентированных мышечных клеток. К моменту вставания на ноги и повышении гидростатического давления развиваются продольные мышечные пучки.

Лимфоциты. Лимфоциты (от лимфа и греч. κύτος — «вместилище», здесь — «клетка») — клетки иммунной системы, представляющие собой разновидность лейкоцитов группы агранулоцитов, белых кровяных клеток. Лимфоциты — главные клетки иммунной системы, обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-жертвами), а также регулируют деятельность клеток других типов.

Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты, В-лимфоциты и так называе­мые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недиффе­ренцированных лимфоидных костномозговых предшественников и при диф-ференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологи­ческими методами. О-лимфоциты (нулевые) лишены поверхностных мар­керов и рассматриваются как резервная популяция недифференцированных лимфоцитов.Т-лимфоциты — самая многочисленная популяция лимфоцитов, составляющая 70—90 % лимфоцитов крови. Они дифференцируются в вилочковой железе — тимусе, поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы — лимфатических узлах (глубокая часть коркового вещества), селезенке, в одиночных и множе­ственных фолликулах различных органов, в которых под влиянием анти­генов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецеп­торы являются продуктами генов иммунного ответа. Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реак­циях клеточного иммунитета, обеспечивая разрушение (лизис) чужерод­ных клеток и собственных измененных клеток (например, опухолевых кле­ток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности.Кроме того, Т-лимфоциты участвуют в регуляции гуморального имму­нитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов. Взаимодействия клеток в иммунном ответе Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте. В клеточном иммунитете участвует Тц (Тк), реагирующий с антиге­ном в комплексе с гликопротеинами МНС I класса в плазматической мем­бране клетки-мишени. Цитотоксическая Т-клетка убивает клетку, инфици­рованную вирусом, в том случае, если она узнает с помощью своих рецеп­торов фрагменты вирусных белков, связанные с молекулами МНС класса I на поверхности зараженной клетки. Связывание Тц с мишенями ведет к высвобождению цитотоксическими клетками порообразующих белков, на­зываемых перфоринами, которые полимеризуются в плазматической мембране клетки-мишени, превращаясь в трансмембранные каналы. Как по­лагают, эти каналы делают мембрану проницаемой, что способствует гибе­ли клетки. Гуморальный иммунный ответ обеспечивают макрофаги (ан-тигенпрезентирующие клетки), Тх и В-лимфоциты. Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки. Такая обработка антигена мак­рофагом называется процессированием антигена. Для дальнейшего развития иммунного ответа на антиген необходимо участие Тх. Но прежде Тх должны быть активированы сами. Эта активация происходит тогда, когда антиген, обработанный макрофагом, распознается Тх. «Узнавание» Тх-клеткой комплекса «антиген + молекула МНС II клас­са» на поверхности макрофага (т.е. специфичное взаимодействие рецептора этого Т-лимфоцита со своим лигандом) стимулирует секрецию интерлей-кина-1 (ИЛ-1) макрофагом. Под воздействием ИЛ-1 активизируются син­тез и секреция ИЛ-2 Тх-клеткой. Выделение Тх-клеткой ИЛ-2 стимулирует ее пролиферацию. Такой процесс может быть расценен как аутокринная стимуляция, так как клетка реагирует на тот агент, который сама синтези­рует и секретирует. Увеличение численности Тх необходимо для реализации оптимального иммунного ответа. Тх активируют В-клетки путем секреции ИЛ-2. Активация В-лимфоцита происходит также при прямом взаимодей­ствии антигена с иммуноглобулиновым рецептором В-клетки. В-лимфоцит сам процессирует антиген и представляет его фрагмент в комплексе с мо­лекулой МНС II класса на клеточной поверхности. Этот комплекс узнает уже задействованный в иммунной реакции Тх. Узнавание рецептором Тх-клетки комплекса «АГ + молекула МНС II класса» на поверхности В-лим­фоцита приводит к секреции Тх-клеткой интерлейкинов — ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, у-ИФН (у-интерферона), под действием которых В-клетка размножается и дифференцируется с образованием плазматических клеток и В-клеток памяти. Так, ИЛ-4 инициирует активацию В-клетки, ИЛ-5 сти­мулирует пролиферацию активированных В-клеток, ИЛ-6 вызывает созре­вание активированных В-клеток и превращение их в плазматические клет­ки, секретирующие антитела. Интерферон привлекает и активирует макро­фаги, которые начинают более активно фагоцитировать и разрушать вне­дрившиеся микроорганизмы. Передача большого количества переработанных макрофагом антигенов обеспечивает пролиферацию и дифференцировку В-лимфоцитов в направ­лении образования плазмоцитов, вырабатывающих специфические антите­ла на конкретный вид антигена. Т-супрессоры (Тс), подавляют способность лимфоцитов участвовать в выработке антител и таким образом обеспечивают иммунологическую толерантность, т. е. нечувствительность к определенным антигенам. Они регулируют количество образующихся плазматических клеток и количество антител, синтезируемых этими клетками. Оказалось, что тормозить выработ­ку антител может и особая субпопуляция В-лимфоцитов, которые получи­ли название В-супрессоров. Показано, что Т- и В-супрессоры могут дей­ствовать подавляюще также на реакции клеточного иммунитета.

 


Дата добавления: 2015-07-08; просмотров: 260 | Нарушение авторских прав


Читайте в этой же книге: Железы -. орган, состоящий из секреторных клеток, вырабатывающих специфические вещества различной химической природы | Классификация и характеристика иммуноцитов. | Принцип строения мембранных органелл | Типы нефронов | Основные положения современной клеточной теории | Гладкая мышечная ткань | Орган равновесия. Строение, развитие, функции | Взаимодействие структур клетки в процессе синтеза строительных белков | Зернистые лейкоциты (агранулоциты), их разновидности |
<== предыдущая страница | следующая страница ==>
нейроцит ядросы| Гистогенез

mybiblioteka.su - 2015-2020 год. (0.011 сек.)