Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Умножение. Чтобы получить результат умножения, что нужно сделать? Умножить. УМНО ЖИТЬ.

Читайте также:
  1. Quot;Для того, чтобы пройти в Совет Божий, надо стать "депутатом" от Бога, а не устроителем теплых местечек для себя самого".
  2. VIII. Критерии оценки результатов защиты выпускной квалификационной работы.
  3. VIII. Результаты ВШК
  4. А что такого Амелия? Я надеюсь, она не настолько глупа, чтобы думать, будто получила это задание за свои заслуги?!
  5. Автор результата интеллектуальной деятельности
  6. Активное применение правовых средств для достижения лучших хозяйственных результатов.
  7. Альном таланте и не в том, чтобы сидеть у реки, слушать барочную

Для многих математика в школе была непонятным и нелюбимым предметом. В большинстве случаев ученики не виноваты, просто их изначально неправильно учили и чем дальше, тем хуже учат. Рассмотрим ситуацию на примере всем известной "таблицы умножения". Есть такой старый анекдот:"Женщина возмущается что очень удобно 5х5=25, 6х6=36, а вот почему 7х7=49, неужели было трудно 47 сделать?" Очень практичный подход - сделать как ей удобно, а не как правильно. В начальной школе у всех нас "учительница первая моя", которая крайне редко идет против стандарта, действует "как учили", "по учебнику" и в соответствии с "методическими планами".

Творчество и новаторство в этой области выражается в "женских" подходах - с со стихами и песнями, танцами и бубнами, зверушками и финтифлюшками от всей души с наивным желанием сделать привлекательнее и "красивше", с твердой уверенностью в том что "дэти, эта нелза понят, эта нужьна проста запомнит":

Ни о каком абстрактном мышлении здесь не может быть и речи - отвлекает всё, надо напрягаться даже чтобы просто прочитать. Но не будем сурово осуждать всех творцов, они хотели как лучше, а получилось как всегда.

Вместо злобствования попробуем немного поколдовать над всем известным, казалось бы простейшим предметом и последовательно очистить зерна истины от плевел маразма улучшательства.

Для начала убираем лишние краски, картинки, искажения и получаем обычные колонки примеров умножения:

Затем по принципу соблюдения необходимых и достаточных условий, отсекаем лишнее как скульпторы: все примеры умножения на 1 и 10 как элементарные и все повторы. Последнее очень важно, ведь при механическом запоминании следует бойкий ответ 6х8=48, а вот 8х6= уже вызывает заминку либо ошибку. При исключении повторов такое нереально, поскольку уже сама система подачи материала заставляет понять что это одно и то же. Кроме того, психологически облегчает учёбу не только снижение числа примеров со 100 до 36, но и последовательное уменьшение их количества в колонках:

Именно такой, сокращенный вариант (правда с колонкой 1 х...=) можно было увидеть на обложках школьных тетрадей до 1970-х гг. Несомненно, можно остановиться на этом для удобства механического запоминания, но понимания математики оно не добавит. Поэтому двигаемся дальше.

Внимательный читатель наверное заметил, что до сих пор мы говорили о ПРИМЕРАХ умножения, а не о ТАБЛИЦЕ умножения.

Смотрим как выглядит настоящая, легкая, удобная для запоминания таблица умножения с полным и правильным названием: таблица умножения И ДЕЛЕНИЯ, поскольку множители одновременно являются и делителями. Хорошо заметна симметрия таблицы из-за выделения идущих по диагонали квадратов чисел:

историческое название "таблица Пифагора"

а так выглядела в древности таблица умножения у шумеров:

Делаем последнюю концептуальную трансформацию - начинаем таблицу умножения не сверху, а снизу. Почему? Во-первых, это интуитивно понятнее: ниже - меньше, выше - больше, а направление слева направо сохраняется как совпадающее с направлением письма слева - меньше, затем направо - больше.

Во-вторых... расскажем чуть позднее.

Правильную таблицу умножения можно дать ученику и в готовом виде, но лучше всего если он сам её составит. Да-да. Это вполне доступно даже первокласснику!

Рисуем сетку и нумеруем ряды и столбцы с 1 до 9 - это соответствует примерам умножения на 1, они же будут выполнять функции сомножителя/кратности/во сколько раз.

Затем учеником заполняются ряд и столбец с 2 путем прибавления числа 2 для каждой последующей клеточки, затем ряд и столбец с 3 и так далее, получается простая таблица умножения:

Что это даёт?

Уже с начальной школы ученик привыкает к табличной форме, с которой ему потом придется часто встречаться, интуитивно понимает, что таблицы создаются как удобный и концентрированный справочный материал, часть из которого надо знать наизусть для удобства применения.

Поначалу для удобства пользования таблицей лучше пользоваться "уголком" для выделения строк и столбцов - вырезаем квадрат с одного угла чистого тетрадного листа. Привычка координатного поиска образуется достаточно быстро.

При таком подходе не нужно тупо механически запоминать колонки примеров умножения, а сразу можно дать пользоваться всей таблицей. Пусть она лежит перед глазами в помощь решению примеров и через некоторое время тренировок запоминание придет само, в неё ученик будет заглядывать все реже и реже.

Таблица должна стать тем же, чем она была изначально - помощью в работе. Упор всегда и везде должен быть не на запоминание, а на понимание и знание где можно найти справочный материал и как им пользоваться.

При самостоятельном заполнении таблицы умножения построчно сразу становится очевидным что умножение - это всего лишь многоКРАТНОЕ сложение, и соответственно деление - это многоКРАТНОЕ вычитание, поэтому легко приходит понимание принципиальной разницы выражений "на сколько больше/меньше" и во сколько раз больше/меньше". Это очень важно для последующего составления уравнений по условиям задач.

Выделение штриховкой или цветом диагонали (квадратов чисел) ясно показывает симметричность таблицы, т.е. равнозначность последовательности сомножителей и здесь избыточность материала играет в сторону закрепления его (повторение - мать учения) и самостоятельного выявления такой закономерности.

Уже потом, когда потребуется в процессе обучения, дети узнАют сколько полезного и интересного связано со знакомой с первого класса простенькой табличкой. Подобно Журдену из "Мещанина во дворянстве" Ж.Б. Мольера, который с удивлением узнал что он говорит прозой, детям надо будет только добавить новую терминологию и новые выводы.

Например, им будут говорить уже не просто о втором сомножителе или кратности сложения, а назовут его коэффициентом.

Каждая строка и столбец таблицы представляют из себя арифметическую прогрессию, от которой легко переходим уже к геометрической прогрессии, факториалам и прочим будто бы сложностям.

Если выделить любой прямоугольник на такой таблице, то в правом верхнем углу его будет указана площадь (чудо!), т.е. таким образом демонстрируется что алгебра и геометрия - это всего лишь разные способы отображения общих закономерностей единой науки математики. Другими словами, наглядно показывается что произведение чисел соответствует площади прямоугольника, а квадрат числа - это действительно квадрат (соответственно для куба надо рисовать третью координату). А отсюда легко переходим к решению геометрических задач алгебраическими способами и наоборот - смотря что удобнее.

Понимание графиков с осями Х и Y, названиями "абсцисса" и "ордината" уже не вызовет затруднений - это будет привычная с начальных классов форма представления материала, надо только дорисовать стрелочки. И... объяснить чем отличаются кардинальные числа от ординальных (они же количественные и порядковые соответственно).

В конце-концов и понимание интеграла как суммы бесконечно малых величин исходит именно из понимания сути умножения натуральных чисел (и опять геометрические аналоги - площадь на криволинейной трапеции на графике функции), иначе интегрирование будет тупо восприниматься как заученные механические действия при обнаружении хитрой закорючки в виде длинной буквы S.

Так что большинство проблем из-за НЕПОНИМАНИЯ ОСНОВ.


Дата добавления: 2015-07-08; просмотров: 420 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Твоя беременность и окружающие| II. Виды полетов воздушных судов

mybiblioteka.su - 2015-2024 год. (0.013 сек.)