Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Получение моноклональных антител

Читайте также:
  1. III.3.5. ХАРАКТЕРИСТИКА ИММУНГЛОБУЛИНОВ - АНТИТЕЛ
  2. IV. АНТИТЕЛА
  3. Всемирно-историческая теорияизучает общемировое развитие, прогресс человечества.(Мировоззрение - получение максимальных материальных благ).
  4. Выработкой соответствующих антител и
  5. ГЛАВА 1. Порядок обращения за получением займа
  6. Глава 4. Отрочество: Получение помощи
  7. Глава 6. Язык любви №3: Получение подарков

 

Антитела - белки сыворотки крови, которые синтезируются в организме как проявление защитной реакции при попадании в него чужеродного вещества (антигена). Иммунная система вырабатывает специфические антитела на огромное множество антигенов. В основе такой способности лежит наличие большого многообразия клонов лимфоцитов, каждый из которых вырабатывает антитела с узкой специфичностью. В совокупности называемые иммуноглобулинами (Ig), антитела составляют один из главных белковых компонентов крови - по весу около 20% суммарного белка плазмы.

В качестве антигенов выступают различные вещества: клетки микроорганизмов, вирусы, белки, нуклеиновые кислоты, в некоторых случаях низкомолекулярные вещества типа антибиотиков или пестицидов. Антитела образуются не против всей молекулы белка или бактериальной клетки, а только к небольшим участкам на их поверхности, получивших название антигенных детерминант. В случае белковой молекулы антигенной детерминантой являются участки поверхности, содержащие около 5 аминокислотных остатков.

Простейшие молекулы антител имеют форму буквы Y с двумя идентичными антиген-связывающими участками - по одному на конце каждой из двух “ветвей”. Связывание антигенных детерминант приводит к потере определенных функций молекулы или клетки, на чем и основан защитный механизм действия антител. Поскольку участков два, они могут сшивать антигены.

Если молекула антигена имеет три или большее число антигенных детерминант, то антитела могут сшивать их в обширную сеть. Достигнув определенных размеров, такая сеть может выпасть из раствора в осадок.

Тенденция больших иммунных комплексов к осаждению (преципитации) удобна для выявления антител и антигенов. Образование таких комплексов может приводить к агглютинации (склеиванию) молекул. Это явление лежит в основе определения групп крови, когда эритроциты склеиваются антителами той или иной специфичности - реакция гемагглютинации.

Молекула антитела образована четырьмя полипептидными цепями. Две из них - идентичные легкие (L-цепь, из 220 аминокислот), а две - тяжелые (H-цепь, из 440 аминокислот). Все четыре цепи соединены между собой нековалентными и ковалентными (дисульфидыми) связями. Антиген-связывающие участки образуются за счет одной H и одной L-цепи. Эффективность реакций связывания антигена возрастает благодаря гибкому шарнирному участку антитела, который позволяет изменять расстояние между двумя антиген-связывающими участками. Шарнирный участок находится на H-цепи. H-цепь образует также “хвостовой” участок молекулы, который содержит также одну или несколько олигосахаридных цепочек, функция которых неясна. Как L, так и Н-цепь построены из повторяющихся сегментов, или доменов, каждый из которых сворачивается независимо, образуя компактную функциональную единицу (эпитоп). Эти участки также могут выступать в качестве антигенных детерминант и, соответственно, связываться другими антителами.

В 1975 году английскими учеными Георгом Кёлером и Цезарем Мильштейном была предложена методика получения клеточных гибридов – гибридом, продуцирующих МКА. Гибридому получали между нормальной АОК и опухолевой, плазмоцитомной клеткой. Плазмоцитома была взята потому, что она больше всего соответствовала АОК по типу дифференцировки. Весь ее синтетический аппарат был настроен на синтез, иммуноглобулинов.

Плазмоцитома происходит из "юных" плазматических клеток, то есть как раз из тех клеток, которые синтезируют антитела. Это свойство сохраняется в опухолях, возникших из соответствующих клеток. Очень важной особенностью опухолей является их возникновение из одной генетически измененной (мутантной) клетки. Поэтому опухоль возникает и развивается как клон, в нашем случае как клон иммуноглобулинобразующих клеток. Причем они образуют строго однородный по всем свойствам моноклональный иммуноглобулин.

Нормальные плазматические клетки (или их предшественники - лимфоциты) смертны, их срок жизни - несколько дней. Опухоль, и в этом ее принципиальное отличие от нормальных предшественников, бессмертна. Ее можно культивировать в пробирке или пересаживать от одного животного другому неограниченное число раз и в течение неограниченного времени. В отличие от нормальной ткани опухоль автономна, организм "хозяина" неспособен (за очень редкими исключениями) остановить неограниченный рост злокачественного опухолевого клона.

Для выделения нужной гибридомы от присутствующих в системе отдельных неслившихся клеток и от гибридов иного состава или иной специфичности, чем требуемые, авторы разработали специальную схему, использующую отбор клеток в селективной среде. Прежде всего, был получен особый мутант мышиной плазмоцитомы, рост которого можно было контролировать составом питательной среды. Для получения мутанта использовали особенности синтеза нуклеиновых кислот (ДНК и РНК), имеющихся во всех клетках и необходимых для их существования. Известно, что имеются два пути синтеза предшественников нуклеиновых кислот: основной и резервный. Основной - это путь новообразования нуклеотидов, звеньев, входящих в состав нуклеиновых кислот. Этот путь включает несколько этапов и блокируется противоопухолевым препаратом аминоптерином (А). Однако клетки не гибнут от этого препарата, поскольку обладают резервным путем - способностью синтезировать нуклеотиды и нуклеиновые кислоты, реутилизируя продукты распада ранее синтезированных нуклеиновых кислот: гипоксантина (Г) и тимидина (Т). Добавление Г и Т в питательную среду, содержащую А, снимает токсический эффект последнего.

Для селекции гибридом надо было получить мутант плазмоцитомы, не способный пользоваться резервным путем и, следовательно, погибающий в среде, содержащей Г, Т и А (ГАТ-среда) Такой мутант получили путем добавления в среду токсических аналогов Г и Т. Все клетки, способные усваивать Г и Т включали их токсичные аналоги и погибали Выживали лишь те редкие мутанты, которые были неспособны усваивать Г и Т, то есть были лишены резервного пути. Из потомства этих клеток дополнительно отбирали еще и такие мутанты, которые утратили способность к синтезу собственных иммуноглобулинов.

Мышей интенсивно иммунизировали определенным материалом - белком, бактериальной клеткой или клеткой животного происхождения. Когда в их крови появлялись антитела, у них брали селезенку и лимфатические узлы (места скопления АОК), и из них готовили взвесь клеток. К ней добавляли в избытке клетки мутантной плазмоцитомы и полиэтиленгликоль (ПЭГ). После короткой инкубации, требующейся для слияния клеток, их отмывали от ПЭГ и помещали в среду, содержащую Г,Т и А. Теперь в системе находились гибриды АОК и АОК, АОК и плазмоцитомы, а также оставшиеся свободным и АОК и клетки плазмоцитомы. Из них нужно было отобрать только гибриды АОК и плазмоцитомы. После недолгого (несколько дней) культивирования одиночные АОК, атакже гибриды АОК и АОК погибали, так как нормальные клетки смертны и быстро погибают в культуре. Плазмоцитомные клетки и их гибриды также погибали, так как А блокировал основной путь синтеза предшественников нуклеиновых кислот, а Г и Т их не спасали. Выживали, следовательно, только гибриды АОК и плазматических клеток, так как бессмертие они унаследовали от плазмоцитомы, а резервный путь - от нормальной клетки. Такие гибриды, гибридомы, сохраняли способность синтезировать и секретировать антитела.

Следующий этап после получения гибридом - клонирование и отбор нужных клонов Выжившие в ГАТ клетки рассевали в специальные пластиковые планшеты, содержащие обычно 96 лунок емкостью примерно по 0,2 см3. В каждую лунку помешали в среднем по 10 гибридомных клеток, которые культивировали в присутствии "кормящих" клеток, не имеющих отношения к гибридомам, но способствующих их росту. После нескольких дней культивирования содержимое каждой лунки проверяли на присутствие антител нужной специфичности. Для этого использовали микрометоды выявления антител к соответствующему антигену. Клетки из лунок, содержащих нужные антитела, клонировали, то есть повторно рассевали по таким же лункам, но из расчета 1 клетка на лунку, вновь культивировали и проверяли на присутствие нужных антител. Процедуру повторяли 1-2 раза. Таким образом, отбирали клоны, продуцирующие антитела только одной нужной специфичности, то есть моноклональные антитела. Полученные клоны можно заморозить при -70°С и хранить до того, пока они не потребуются. Их можно культивировать и накапливать антитела в культуральной среде, а можно привить мышам (так как гибридомы - это опухолевые клетки), где они будут расти и накапливать колоссальные количества моноклональных антител. От одной мышки можно получить антител не меньше, чем от кролика. Эти антитела не содержат посторонних антител и настолько однородны физико-химически, что могут рассматриваться как чистые химические реактивы.

Начало широкому использованию антител в диагностических целях положил в 1955 году американский иммунолог А. Кунс. Он присоединил к антителам светящийся краситель. Флюоресцирующие антитела сделали видимыми места расположения интересующих его молекул в клетке. Этот метод получил название иммунофлюоресцентного.

Выбор маркера и способа его «привязки» к антигену является одним из важных этапов в проведении анализа. Первоначально широко применялись радиоизотопные метки (радиоиммунный анализ - РИА), предложенные американскими исследователями (С. А. Берсон, Р. С. Ялоу, 1959). Однако в последние годы все более широкое использование в качестве маркеров находят ферменты. Это обусловлено рядом принципиальных трудностей, связанных с применением изотопныx маркеров. Так, изотоп 125I имеет время полураспада 60 суток, чем ограничивается срок его использования. Изотоп 3Н имеет длительное время жизни (12,5 лет), однако под действием бэта-излучения происходит распад молекул антигена, в результате чего время жизни меченых 3Н-соединений тоже ограничено. Кроме того, эффективность счета трития существенно ниже, чем 125I. Ограничивающими факторами РИА являются сложность и высокая стоимость оборудования, необходимость централизованной системы распределения иммунохимических наборов, меченных радиоактивными изотопами, определенная опасность изотопов для окружающей среды. Учитывая трудности использования радиоизотопных меток, были предложены в качестве маркеров ферменты.

При иммуноферментном анализе антиген связывается с поверхностью лунки полистирольного планшета. В лунку добавляют антитела, несущие фермент в качестве метки, инкубируют и отмывают. Далее приливают субстрат, который меняет окраску при взаимодействии с этим ферментом. Изменение окраски можно измерить с помощью спектрофотометрии. Таким способом проводится индикация и количественная оценка биоорганических соединений с чувствительностью до 10-12 г/литр.

В настоящее время известно более 2000 разных ферментов, однако только некоторые находят применение в иммуноферментном анализе. Это объясняется высокими требованиями, предъявляемыми к свойствам ферментов. Фермент должен быть высоко активен, а продукты его реакции детектироваться с высокой чувствительностью, он должен быть стабилен, так чтобы его активность сохранялась не менее одного года. Содержание фермента-маркера в определяемом образце должно быть минимальным. Именно из-за этого для разных объектов используют разные ферменты. Во многих случаях, когда необходим качественный результат, оценка иммунохимической реакции может быть проведена визуально.

Для введения ферментативной метки разработано много разных химических, биохимических и иммунологических способов.

Первым реагентом, использованным для синтеза иммуноферментных конъюгатов, был глутаровый альдегид, реагирующий с аминогруппами лизина белковых молекул. С помощью глутарового альдегида получены конъюгаты антител и антигенов с пероксидазой, щелочной фосфатазой, глюкоамилазой. В настоящее время широко используются иммунопероксидазные конъюгаты и конъюгаты с бэта-галактозидазой.

Кроме ферментов в качестве маркеров могут быть использованы субстраты. В частности, в иммунокофакторном анализе применяются в качестве меток АТФ и НАД, которые могут быть «пришиты» к молекуле антигена через адениновый остаток таким образом, что сохраняется их способность взаимодействовать с ферментом. Аналогично были использованы субстраты пероксидазы (люминол, изолюминол), которые могут быть окислены пероксидом водорода в реакции хемилюминесценции, катализируемой пероксидазой.


Дата добавления: 2015-07-07; просмотров: 144 | Нарушение авторских прав


Читайте в этой же книге: Общие представления о вакцинации | Создание субъединичных вакцин | Создание аттенуированных вакцин |
<== предыдущая страница | следующая страница ==>
Создание векторных вакцин| Меры безопасности при работе в электротермических установках

mybiblioteka.su - 2015-2024 год. (0.015 сек.)