Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Особенности выполнения анализа колориметрическими методами

Читайте также:
  1. AT СТАЦИОНАРНАЯ И AT ОПЕРАТИВНАЯ. ПОЗЫ AT. ПРАВИЛА ВЫПОЛНЕНИЯ AT
  2. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  3. II. Среди немыслимых побед цивилизации мы одиноки,как карась в канализации
  4. III. Организация разработки тематики и выполнения выпускных квалификационных работ.
  5. III. ПРАВИЛА ВЫПОЛНЕНИЯ ПРЫЖКОВ С ПАРАШЮТОМ.
  6. III. ХАРАКТЕРНЫЕ ОСОБЕННОСТИ УЧЕНИЙ ВЕАИКОГО СИМВОЛА
  7. XI. Особенности сетевого газоснабжения потребителей

Колориметрическим (от английского colour – цвет) называется метод анализа, основанный на сравнении качественного и количественного изменения потоков видимого света при их прохождении через исследуемый раствор и раствор сравнения. Определяемый компонент при помощи химико-аналитической реакции переводится в окрашенное соединение, после чего измеряется интенсивность окраски полученного раствора. При измерении интенсивности окраски проб с помощью прибора фотоколориметра метод называется фотоколориметрическим. Соответственно, при измерении интенсивности окраски визуальным способом (например, оценивая интенсивность окраски сравнительно с каким-либо образцом) метод называется визуально-колориметрическим.

Основной закон колориметрии – закон Бугера–Ламберта–Бера (с ним можно познакомиться подробнее в любом справочнике по колориметрическим методам анализа или в элементарном курсе физики) записывается следующим образом:

где: D – оптическая плотность раствора;
I0 и I – интенсивность светового потока, попадающего на раствор (I0) и прошедшего через раствор (I);
ε – коэффициент светопоглощения (величина, постоянная для данного окрашенного вещества), л х г-моль–1 х см–1;
C – концентрация окрашенного вещества в растворе, г-моль/л;
l – толщина поглощающего свет слоя раствора (длина оптического пути), см.

После обработки и добавления реагентов пробы приобретают окраску. Интенсивность окраски является мерой концентрации анализируемого вещества. При выполнении анализа визуально-колориметрическим методом (pH, железо общее, фторид, нитрат, нитрит, аммоний, сумма металлов) определение проводится в колориметрических пробирках с меткой «5 мл» либо в склянках с меткой «10 мл».

Колориметрические пробирки представляют собой обычные, широко используемые в лабораториях пробирки из бесцветного стекла, имеющие внутренний диаметр (12,8±0,4) мм. Колориметрические пробирки могут иметь несколько меток («5 мл», «10 мл»), показывающих объем (и, следовательно, высоту), до которого следует наполнить пробирку пробой, чтобы обеспечить удобные и близкие условия для визуального колориметрирования. Обычно колориметрические пробирки стараются подобрать одинаковой формы и диаметра, т.к. от последних зависит высота слоя окрашенного раствора. Аналогично подбираются и склянки для колориметрирования (обычно это аптекарские флаконы диаметром до 25 мм).

Наиболее точные результаты при анализе визуально-колориметрическим методом достигаются, если сравнивать окраску пробы с окраской модельных эталонных растворов. Их приготавливают заранее с помощью реактивов-стандартов по методикам, приведенным в приложении 1. Следует иметь в виду, что возникающие в процессе колориметрических реакций окраски обычно малоустойчивы, поэтому при описании приготовления растворов приводят, при необходимости, и сроки их хранения.

Для упрощения визуального колориметрирования при полевых анализах окраску раствора-пробы можно сравнивать не с эталонными растворами, а с нарисованной контрольной шкалой, на которой образцы воспроизводят окраску (цвет и интенсивность) модельных эталонных растворов, приготовленных с соблюдением заданных значений концентрации целевого компонента. Контрольные шкалы, применяемые при визуальном колориметрировании в составе некоторых тест-комплектов, приведены на цветной вкладке.

За результат анализа при визуальном колориметрировании принимают то значение концентрации компонента, которое имеет ближайший по окраске образец контрольной шкалы либо модельного эталонного раствора. Результат анализа представляют в виде:

«близко _________________________ мг/л».
значение концентрации по шкале

В случаях, когда окраска раствора-пробы в колориметрической пробирке окажется имеющей промежуточную интенсивность между какими-либо образцами на контрольной шкале, результат анализа записывают в виде:

«от _______ до _______ мг/л».

Если окраска раствора-пробы в колориметрической пробирке окажется интенсивнее крайнего образца на шкале с максимальной концентрацией, проводят разбавление пробы. После повторного колориметрирования вводят поправочный коэффициент для учета степени разбавления пробы. Результат анализа в этом случае записывают в виде:

«более__________________________________мг/л».
значение максимальной концентрации по шкале


Рис. 1. Фотоэлектроколориметры:
а) лабораторный, марки МКФМ-02;
б) полевой, марки SMART (LaMotte Co., USA).

Окрашенные пробы, полученные при выполнении анализов, можно колориметрировать также с помощью фотоэлектроколориметров (рис. 1). При таком способе определяют оптическую плотность растворов-проб в стеклянных кюветах с длиной оптического пути 1–2 см из комплекта фотоэлектроколориметра (можно использовать и кюветы с большей длиной оптического пути, однако в этом случае следует проводить анализ с увеличенным в 2–3 раза объемом пробы). Приборное колориметрирование позволяет существенно повысить точность анализа, однако требует большей тщательности и квалификации в работе, предварительного построения градуировочной характеристики (желательно не менее 3 построений). При этом измеряют значения оптической плотности модельных эталонных растворов (см. приложение 1). При анализах полевыми методами в экспедиционных условиях удобно фотометрировать пробы с помощью полевых колориметров. В частности, для таких целей ЗАО «Крисмас+» поставляет колориметры различных типов, имеющие набор съемных светофильтров в широком диапазоне длин волн видимого света. Значения основных параметров в случае приборного колориметрирования приведены в тексте описания выполнения определений.


Дата добавления: 2015-07-07; просмотров: 291 | Нарушение авторских прав


Читайте в этой же книге: Обработка результатов измерений. | Нефелометрический и турбидиметрический методы | Зависимость показателя преломления водных растворов некоторых веществ от концентрации | Поляриметрический метод | Хроматическая поляризация света | Поляризационные устройства. | Поляризационные призмы. | Приборы для поляризационно-оптических исследований. | Ультрамикроскопия и электронная микроскопия. | Люминесцентный анализ. |
<== предыдущая страница | следующая страница ==>
Колориметрический и фотоколориметрический методы.| Особенности выполнения анализа титриметрическим методом

mybiblioteka.su - 2015-2024 год. (0.006 сек.)