Читайте также:
|
|
Гистологическое строение коры мозжечка: нейроциты, глиоциты. Слои коры мозжечка: молекулярный, ганглиозный и зернистый слои. Молекулярный слой представлен в основном глией, выполняющей опорно-механическую и трофическую функции, а также дендритами клеток Пуркинье, звездчатыми и корзинчатыми нейроцитами. Звездчатые нейроциты названы так потому, что от их тела отходит большое количество дендритов, которые ветвятся в молекулярном слое. Нейриты этих клеток уходят в ганглиозный слой, где контактируют с грушевидными клетками. Корзинчатые клетки имеют несколько коротких дендритов и один нейрит, идущий поперек извилин, корзинообразно охватывая тела грушевидных клеток. Таким образом, звездчатые и корзинчатые нейроциты осуществляют ассоциативную связь между клетками Пуркинье. Ганглиозный слой мозжечка представлен телами грушевидных клеток (клеток Пуркинье). Ихдендриты уходят в молекулярный слой, а аксоны формируют эффекторные волокна мозжечка. От аксона грушевидных клеток на уровне зернистого слоя отходит возвратная ветвь, которая идет в молекулярный слой, где делитсяТ-образно. Эти веточки коллатерали аксона в молекулярном слое мозжечка идут вдоль извилин, образуя синапсы с дендритами ряда грушевидных клеток. Зернистый слой мозжечка представлен нейроцитами, получивших название клеток-зерен. Они бедны цитоплазмой и имеют относительно большое ядро. От тела клеток-зерен отходит 3-4 коротких дендрита, контактирующие с окончаниями приходящих в мозжечок афферентных (моховидных) волокон. Нейриты клеток-зерен проходят в молекулярный слой и Т-образно делятся на 2 ветви, которые идут вдоль извилин мозжечка, контактируя с дендритами грушевидных клеток. Наряду с клетками-зернами в зернистом слое коры мозжечка имеются звездчатые клетки Гольджи. Различают 2 вида этих клеток. Одни имеют короткие нейриты и лежат вблизи ганглионарного слоя. Их разветвленные дендриты распространяются в молекулярный слой, достигая их поверхности. Нейриты направляются в зернистый слой.
Звездчатые клетки Гольджи с длинными нейритами имеют обильно ветвящиеся в зернистом слое дендриты и нейриты, выходящее в белое вещество. Предполагают, что эти клетки обеспечивают связь между различными областями коры мозжечка. Наряду с этими клетками в зернистом слое выделяют еще горизонтальные клетки Гольджи. Они располагаются между зернистым и ганглионарным слоями, имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтально идущие дендриты, которые заканчиваются в ганглионарном и зернистом слоях. Нейриты данных клеток дают коллатерали в зернистый слой и уходят в белое вещество. В кору мозжечка поступают два вида афферентных нервных волокон - моховидные и лазящие. Моховидные, вероятно, принадлежат к оливомозжечковому и мостомозжечковому путям. Они заканчиваются на дендритах клеток-зерен. От последних импульс через нейрит поступает в молекулярный слой, где передается на дендриты грушевидных клеток. Лазящие волокна поступают в мозжечок, вероятно, по спинномозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным клеткам и стелятся по их дендритам, образуя с ними синаптические связи. Таким образом, любые нервные импульсы, поступающие в мозжечок, достигают грушевидных клеток - основных эффекторных нейроцитов мозжечка. Особо следует отметить следующие межнейронные связи клеток Пуркинье: I. Связь вдоль извилин, осуществляемая аксонами клеток - зерен и коллатералями аксонов грушевидных клеток. 2. Связь поперек извилин за счет аксонов корзинчатых клеток.
Наряду с разбором нейроцитов коры мозжечка следует остановиться на глиалъных клетках, особое внимание уделив глиоцитам с темными ядрами, которые лежат между грушевидными клетками. Их отростки идут к поверхности коры мозжечка и образуют Бергмановские волокна молекулярного слоя коры мозжечка. Эти волокна, образуя многочисленные ветвления, поддерживают дендриты клеток Пуркинье.
Кора головного мозга. Гистологическое строение коры. Ее нейроциты и глиоциты, кровоснабжение коры. Разобрать эффекторные нейроциты коры головного мозга (пирамидные и веретеновидные) и ассоциативные (звездчатые, паукообразные), их функциональное значение.
Новая кора, ее слои. Эта кора характерна для лобных, теменных и височных долей. Она представлена 6-ю слоями. I. Молекулярный слой - это самый наружный слой серого вещества коры больших полушарий, он представлен ветвлениями дендритов пирамидных клеток, мелкими нейроцитами Кахаль-Ретциуса, горизонтальными нейроцитами, а также глиалъными клетками и кровеносными сосудами. Последние, т.е. глиоциты и кровеносные сосуды, имеются во всех слоях коры, в связи с чем, о них не упоминается при разборе строения следующих слоев коры головного мозга. 2.Наружный зернистый слой - представлен слоем малых и средних пирамидных нейроцитов. Их дендриты уходят в молекулярный слой, а аксоны проникают в лежащие глубже слои и в белое вещество. 3.Слой крупных пирамид состоит из пирамидных нейроцитов большей величины от 10 до 40 мкм. Их дендриты уходят в молекулярный слой, а нейриты - в белое вещество. 4. Внутренний зернистый слой - особо представлен в зрительной зоне коры, иногда он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими звездчатыми нейроцитами. В этом слое много горизонтальных волокон. 5.Ганглионарный слой коры - образован крупными пирамидными нейроцитами. Среди них в прецентральной извилине имеются гигантские пирамиды (клетки Беца), описанные впервые киевским анатомом В.Я.Бецем в 1874 году. Высота клеток Беца достигает 120 мк, а ширина 80 мк. Нейриты клеток 5-го слоя образуют основную частькортикоспинальных (пирамидных путей), заканчивающихся синапсами на мотонейронах спинного мозга. Это прямой путь от двигательного анализатора коры к двигательным клеткам ядер передних рогов спинного мозга. 6. Слой полиморфных клеток образован нейроцитами различной формы, основную массу которых составляют веретеновидные нервные клетки. Нейроциты этого слоя меньше других и лежат редко. Нейриты нервных клеток 6-го слоя коры головного мозга уходят в белое вещество в составе эфферентных путей головного мозга.
В разных участках коры головного мозга количество слоев, густота клеток, толщина отдельных слоев, толщина коры в целом, характер перехода серого вещества в белое не одинаковы. Это позволило выделить поля коры головного мозга. В.Я.Бец описал 11 обл. коры головного мозга. Позже Бродман выделил 54 поля. Последняя классификация считается более приемлемой. В качестве примеров можно привести 4 и 6-е поля в прецентральной извилине - двигательный анализатор. В постцентральной: извилине располагаются I, 2, 3, 5 поля - кожный анализатор, 17-е поле - зрительный анализатор (8 слоев), 22-е поле - корковый центр слухового анализатора. Наиболее примитивной считается 2-х слойная древняя кора шпорной борозды. Наряду с цитоархитектоническим принципом деления коры головного мозга на поля - имеется еще миелоархитектонический принцип, разработанный 0. Фогтом. Этот ученый основал строение коры в зависимости от структуры и расположения мякотных нервных волокон, выделив при этом 250 полей. Согласно миелоархитектонического принципа в коре головного мозга различают следующие слои: I. Слой тангенциалъных волокон. 2. Слой над полоской. 3. Наружная полоска. 4. Слой между полосками. 5. Внутренняя полоска. 6. Слой под полоской.
В связи с разным сроком покрытия миелином нервных волокон т.е. их "вызревание", предложен миелогенетический принцип деления коры головного мозга на поля. Флексиг на основании этого принципа выделил 40 полей: 1-13 - первичные поля, где нервные волокна приобретают миелин внутриутробно; 14-28 вторичные - мякотные волокна приобретают миелин в первый месяц после рождения; 29-40 - окончательные. В них нервные волокна приобретают миелин в течение первого года жизни.
О РГАНЫ ЧУВСТВ. ОРГАН ЗРЕНИЯ И ОБОНЯНИЯ
Рецепторы – это специализированные чувствительные образования, воспринимающие и преобразующие раздражения из внешней и внутренней среды организма. В зависимости от вида раздражителей рецепторы делятся на механо-, фото-, термо- и хеморецепторы. По качеству вызываемых ощущений рецепторы бывают слуховые, зрительные, обонятельные, вкусовые, тактильные, температурные и болевые. По дальности расположения воспринимаемого стимула рецепторы являются дистантными (слух, зрение) и контактными (осязание, обоняние, вкус).
Органы чувств преобразуют специфические раздражения (поступающие из внешней или внутренней среды) в нервные импульсы, передаваемые в ЦНС. Совокупность структур, отвечающих за прием, передачу и анализ определенного вида раздражения, называется анализатором. В каждом анализаторе – 3 части: 1) периферическая – орган чувств, осуществляющий рецепцию раздражения, где находятся специализированные рецепторные клетки; 2) промежуточная – проводящие пути и ядра ЦНС, включенные в передачу сигнала; 3) центральная – определенный участок коры больших полушарий.
По природе рецепторного аппарата органы чувств и рецепторы делят на три типа: 1) Первично чувствующие органы чувств (органы зрения и обоняния). Первично чувствующие рецепторы (окончания дендрита афферентного нейрона) трансформируют энергию стимула в нервную активность непосредственно в сенсорном нейроне, и по его аксону без промежуточного преобразования нервная активность передается к сенсорному ядру (первый сенсорный уровень); рецепцию осуществляют специализированные нейросенсорные клетки, находящиеся в органе чувств. 2) Вторично чувствующие органы чувств (органы вкуса, слуха и равновесия). Рецепцию осуществляют специализированные эпителиальные клетки, к которым подходят нервные волокна (сенсорные волокна) периферического сенсорного ганглия и образуют с клетками синаптические контакты. 3) Рецепторы, не организованные в органы чувств (рецепторы тактильной, проприоцептивной и пр. чувствительности); рецепцию осуществляют специализированные окончания нервных клеток, тела же клеток находятся в чувствительных узлах.
Орган зрения включает глазное яблоко и вспомогательные образования (веки, глазодвигательные мышцы, слезный аппарат). В глазном яблоке различают три оболочки: 1) фиброзная, 5/6 составляет склера и 1/6 роговица; 2) сосудистая оболочка: - собственно сосудистая оболочка (хориоидея), цилиарное тело, радужка 3) сетчатка: пигментный эпителий, нейральный эпителий, 3 релейных нейрона – цепь нейронов по вертикали и 2 ассоциативных – генерируют импульс по горизонтали. Внутреннее ядро глазного яблока: 1) камеры глаза (передняя и задняя); 2) хрусталик; 3) стекловидное тело. Функциональные аппараты глазного яблока: 1. Светопреломляющий (роговица, влага передней камеры, хрусталик, влага задней камеры, стекловидное тело). 2. Аккомодационный (хрусталик, цинновы связки, мышцы цилиарного тела). 3. Вспомогательный аппарат (веки, мышцы, ресницы, слезные железы). 4. Двигательный аппарат (поперечно-полосатые мышцы). 5. рецепторный аппарат (сетчатка, система светофильтров в хрусталике и в области желтого пятна). Орган зрения развивается из разных источников:
1) нервная трубка ® глазной пузырек (выпячивание нервной трубки) ® двустенный глазной бокал: - внутренняя стенка ® собственно сетчатка; - наружная стенка ® пигментный слой сетчатки, мышцы радужки.
2) Эктодерма, прилегающая к глазному пузырьку ® хрусталиковый пузырек ® хрусталик; роговица
3) Мезенхима: - окружающая глазной бокал ® роговица, склера, сосудистая оболочка; - проникающая в глазной бокал ® радужка, стекловидное тело.
Зрительный анализатор – сложная морфофункциональная система, обеспечивающая восприятие, проведение, анализ и интеграцию зрительных раздражителей.
Проводящие пути зрительного анализатора: фоторецепторная клетка ® биполярный нейрон сетчатки ® ганглионарный нейрон ® зрительный нерв ® перекресток зрительного тракта ® латеральное коленчатое тело, подушка таламуса, переднее двухолмие ® кора затылочной области (поля 17, 18, 19). Схема зрительного анализатора: свет проходит через прозрачные среды глаза ® через все слои сетчатки ® воспринимается светочувствительными клетками, (первый нейрон сетчатки), вызывает их раздражение ® импульс передается на биполярные клетки, (второй нейрон сетчатки) ® импульс передается на дендриты ганглионарных клеток, (третий нейрон сетчатки). Аксоны ганглионарных клеток образуют зрительный нерв, который заканчивается двумя пучками: первый пучок оканчивается в верхнем бугре четверохолмия, где лежат зрительные центры, связанные с ядрами нервов, иннервирующих поперечно-полосатые мышцы глазного яблока и гладкие мышцы радужки. Это приводит к тому, что в ответ на определенное световое раздражение происходит конвергенция и аккомодация зрительного аппарата. Другой пучок оканчивается в подушке зрительного бугра и в наружном коленчатом теле, где заложены тела четырех нейронов. Аксоны последних образуют в белом веществе больших полушарий зрительную лучистость, достигающую коры затылочной доли мозга. Световые раздражения превращаются в нервные импульсы, воспринимаемые в коре в виде зрительных ощущений.
В сетчатке нейроны располагаются на трех уровнях: 1. Уровень светочувствительных нейронов, прилегающий к пигментному эпителию – палочки (отвечают за черно-белое изображение) и колбочки (цветное зрение). Они состоят из дендритов (где содержатся световоспринимающие структуры), ядер, аксонов (образуют синапсы с ассоциативными нейронами). 2. Уровень ассоциативных нейронов – биполярные нейроны (связывают светочувствительные и ганглионарные нейроны, обеспечивают прохождение импульса в центральном направлении); горизонтальные нейроны (контактируют своими дендритами с аксонами светочувствительных клеток, а своими аксонами – с аксонами других светочувствительных клеток, удаленных от первых, подавляя их активность, что увеличивает контрастность изображения); амакринные нейроны (также повышают контрастность изображения, но на уровне биполяров). 3. Уровень ганглионарных нейронов – их аксоны идут к слепому пятну и образуют зрительный нерв.
Структура фоторецепторных элементов: 1) Палочковые нейроны – состоят из наружного и внутреннего сегмента, между ними – ресничка. Фоторецепция осуществляется наружным сегментом, в котором находится около 1000 мембранных дисков. Их мембрана содержит родопсин, состоящий из ретинола (витамин А) и бесцветного белка опсина. Диски постоянно образуются в нижней части сегмента путем инвагинации плазматической мембраны. С такой же скоростью (100 за сутки) происходит фагоцитоз дисков в верхней части сегмента клетками пигментного эпителия. В плазматической мембране наружного сегмента находятся Na+ - каналы, которые в покое (в темноте) открыты. Палочки располагаются в периферических отделах сетчатки, воспринимают световые сигналы низкой интенсивности (сумеречное зрение). Общее количество этих клеток около 120 млн. 2) Колбочковые нейроны – ресничка значительно короче, внутренний сегмент образует пальцевидные отростки, охватывающие наружный сегмент, который содержит диски, образованные складками плазмолеммы. После того, как колбочки сформировались, они не создают новые диски. Диски содержат зрительный пигмент иодопсин, который в функционально различных типах колбочек разлагается под действием красного, зеленого или синего света. Во внутреннем сегменте содержится крупная липидная капля, окруженная митохондриями; она играет роль фильтра и пропускает волны определенной длины. Колбочки располагаются в центральных отделах сетчатки и особенно многочисленны в центральной ямке желтого пятна (область наилучшего видения). Они реагируют на свет высокой интенсивности, обеспечивают дневное и цветовое зрение. Их количество у человека 6 – 7 млн.
Сетчатка в темноте: весь зрительный пигмент возвращается в невозбужденное состояние; в пигментном эпителии меланосомы перемещаются из отростков (окружающих палочки и колбочки) в тела эпителиоцитов, поэтому фотоны поглощаются не меланином эпителиоцитов, а зрительным пигментом светочувствительных нейронов; это приводит к повышению чувствительности сетчатки к свету; глаз начинает видеть при слабой освещенности. Сетчатка на свету: доля невозбужденного пигмента уменьшается; меланосомы пигментного эпителия перемещаются в отростки эпителиоцитов и окружают палочки и колбочки; падающие на сетчатку фотоны поглощаются меланином (а не пигментом палочек и колбочек); чувствительность сетчатки к свету снижается.
Наряду с выполнением фоторецепторной функции глаз высших животных и человека служит одновременно диоптрическим (светопреломляющим) аппаратом, дающим на уровне палочек и колбочек четкое, уменьшенное и обратное изображение рассматриваемых объектов, удаленных от глаза на различное расстояние (аккомодация глаза). Светопреломляющими являются все прозрачные среды глаза – водянистая влага передней и задней камер глаза, стекловидное тело, роговица, хрусталик. Аккомодация осуществляется путем изменения кривизны хрусталика в результате расслабления или сокращения цилиарной мышцы; к аккомодационному аппарату относятся: капсула хрусталика, цинновы связки (крепятся к ресничной мышце, радужке) и ресничное тело с ресничным пояском.
Прозрачность роговицы (самое существенное ее свойство) зависит от нормально протекающих обменных процессов, от свойств протеинов роговичной ткани, от правильного расположения коллагеновых фибрилл, от избирательной проницаемости эндотелия и эпителия.
Орган обоняния – обонятельный эпителий, покрывающий слизистую оболочку верхней части носовой полости. Клеточный состав: 1) Рецепторные (нейросенсорные) обонятельные клетки; их ядра находятся в средней части эпителия; вверх отходят дендриты, достигающие поверхности эпителия и имеющие на конце утолщения (обонятельные булавы); булавы содержат 10 – 12 ресничек, которые и воспринимают молекулы пахучих веществ; снизу от клеток отходят аксоны, идущие через отверстия решетчатой кости в обонятельные луковицы (прилегают к нижней поверхности головного мозга). 2) Поддерживающие эпителиоциты – отделяют обонятельные клетки друг от друга; их ядра занимают самое верхнее положение, а узкие ножки достигают базальной мембраны; в цитоплазме содержится пигмент, придающий обонятельной области желтый цвет; эти клетки обладают секреторной активностью по апокриновому типу. 3) Базальные эпителиоциты – прилегают к базальной мембране; способны к дифференцировке в поддерживающие клетки (эпителиоциты). Все они контактируют с базальной мембраной.
Дата добавления: 2015-07-08; просмотров: 196 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
СИСТЕМА СПИННОГО МОЗГА | | | ОРГАНЫ ЧУВСТВ. ОРГАН СЛУХА, РАВНОВЕСИЯ, ВКУСА |